Skip to content

peteratBHVI/dioptric_demand_landscapes

Repository files navigation

dioptric_demand_landscapes

Documentation of code for study: Quantification of near-work and peripheral defocus

Purpose: Gaze data is matched with 2D image of a point cloud. Code extract and visualize

A) Accumulative figure of depth data at gaze coordinates

B) Accumulative dioptric landscape matched at gaze coordinates

A) Aim: to compare objective and subjective data - distance to point of regard

matlab: extract_gaze_depth_from_PoR.m

  • extract distance to point of regard from all point clouds
  • apply clustering filter to validate depth data

matlab: royale_LEVEL1_extract_depth_data_at_PoR.m

  • access point cloud

Jupyter notebook, python: studyII_raw_data_dioptric_demand.jpynb

  • extract annotated labels and timestamps from eye-tracking data
  • extract diary data
  • visualize all data

dependencies: from studyII_helpers_lib import DataAccess as get_px_meta

  • Easy access of px individuals meta data from studyII_helpers_lib import VisualizeData
  • Visualisation of data

B) Aim: Creates accumulative dioptric maps per participant / also if multiple recordings that are aligned at gaze coordinates from point cloud data and gaze estimates.

matlab: extract_clustered_depth_reference_PoR.mlx

extract dioptric maps with reference point of regard (gaze coordinates)

dependencies:

  • extract_clustered_depth_data.m Extract each point cloud, applies clustering filter
  • recoridng_fp == filepath of recording folder Data from each participant
  • disp_pointcloud - visualize point cloud (very slow but looks good) Optional to visualize data on the go
  • studyII_helpers_lib.m Provides participant meta data e.g., recording locations

Output csv: clustered_depth_data_with_reference_PoR.csv clustered_depth_data_PoR_counter.csv

Jupyter notebook, python: dioptric_landscapes_studyII.jpynb

summarises dioptric demand for participants and visualisation

dependencies: from studyII_helpers_lib import DataAccess as get_px_meta

  • Easy access of px individuals meta data from studyII_helpers_lib import VisualizeData
  • Visualisation of data

About

dioptric demand and landscapes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published