8cubeDB provides a unified platform to explore gene specificity, marker genes, and expression variability across founder mouse tissues from the Rebboah et al. (2025) dataset. It includes both a RESTful API (built with FastAPI) and an interactive dashboard (built with Streamlit).
-
Frontend Dashboard: https://mouseexplorer.onrender.com Explore genes, visualize Psi-blocks, and browse marker and housekeeping genes interactively.
-
Backend API: https://eightcubedb.onrender.com/docs Programmatic access to the dataset via REST API. Refer to this colab notebook for a tutorial on how to query the database in python.
The backend serves data from two curated SQLite databases:
8cube.db— primary specificity and Psi-block datamean_var_DB.db— mean and variance of gene expression across conditions
All API routes stream data as CSV downloads for seamless integration with downstream tools.
| Endpoint | Description |
|---|---|
/ |
API root — overview of available endpoints |
/config |
Returns available analysis levels, types, and block labels |
/specificity |
Extract gene specificity data for given genes |
/psi_block |
Fetch Psi-block data by analysis level/type |
/highly_specific |
Retrieve genes highly specific to a given variable |
/non_specific |
Retrieve non-specific (housekeeping) genes |
/marker |
Identify marker genes by block label |
/gene_expression |
Get gene expression mean and variance values |
The Mouse Specificity Explorer dashboard provides an interactive interface to visualize and query the API.
| Tab | Functionality |
|---|---|
| 🔬 Gene Viewer | Visualize Psi-block and gene expression data for specific genes |
| 🗺️ Specificity Explorer | Browse gene specificity across the dataset |
| ⭐ Highly Specific Genes | Identify genes specific to a tissue or condition |
| 🏠 Housekeeping Genes | Explore broadly expressed, non-specific genes |
| 🎯 Marker Genes | Discover marker genes for selected blocks |
Built with Streamlit, Plotly, and Pandas, the app offers clean visualizations and downloadable tables.
- Dataset: Rebboah et al. (2025) — 8cube founder mouse dataset
- Metrics: Ψ (Psi) specificity index and ζ (Zeta) selectivity metric
- Levels: Multi-scale analysis (cell type, tissue, organ, etc.)
- Sources: Derived from
table_1(global summary) and*_psi_blocktables (block-level metrics)
┌───────────────────────────────────────┐
│ Streamlit Frontend │
│ (https://mouseexplorer.onrender.com) │
└───────────────┬───────────────────────┘
│ REST API calls (CSV)
▼
┌──────────────────────────────────────┐
│ FastAPI Backend │
│ (https://eightcubedb.onrender.com) │
└───────────────┬──────────────────────┘
│ SQLite Queries
▼
┌──────────────────────────────┐
│ SQLite Databases │
│ - 8cube.db │
│ - mean_var_DB.db │
└──────────────────────────────┘
Developed by Nikhila P. Swarna Pachter Lab, Caltech
Part of the IGVF Consortium Specificity analyses powered by ember.
Licensed under the BSD 2-Clause License. © 2025 Pachter Lab · All rights reserved.
If you use this website or the accompanying database, please cite the following papers:
-
Rebboah E, et al. Systematic cell-type resolved transcriptomes of 8 tissues in 8 lab and wild-derived mouse strains captures global and local expression variation. (2025) DOI: https://doi.org/10.1101/2025.04.21.649844
-
Swarna NP, et al. Determining gene specificity from multivariate single-cell RNA sequencing data. (2025) DOI: https://doi.org/10.1101/2025.11.21.689845