Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion reasoning_gym/algorithmic/count_primes.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def __init__(self):
self._define_attributes(
RangeAttributeDefinition(
name="n",
levels=[10, 1000, 10_000, 50_000, 100_000],
levels=[100, 500, 1000, 5000],
description="Up to which number to consider the primes",
lower_field_name="min_n",
upper_field_name="max_n",
Expand Down
212 changes: 212 additions & 0 deletions training/configs/curriculum-experiments/count_primes/curriculum.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
hydra:
searchpath:
- file:///home/ubuntu/verl/verl/trainer/config

defaults:
- ppo_trainer
- _self_

reasoning_gym:
dataset_size: 20000
developer_prompt: DeepSeekZero
datasets:
curriculum:
enabled: True
schedule:
automatic: False
update_steps: 30 # automatic curriculum updating after 50 steps
last_k: 5120 # num_generations * batch_size * num_training_steps
success_threshold: 0.70
failure_threshold: 0.10
curricula:
count_primes:
attribute_levels:
n: 0

reward:
use_accuracy: True
secondary_rewards:
- name: cosine
scaling_factor: 0.3
- name: format
scaling_factor: 0.2
kwargs:
preappend_thinking_token: False

data:
tokenizer: null
train_files: train.parquet
val_files: test.parquet
prompt_key: prompt
max_prompt_length: 512
max_response_length: 1024
train_batch_size: 32
val_batch_size: 64
return_raw_chat: True
return_raw_input_ids: True
actor_rollout_ref:
hybrid_engine: True
model:
path: Qwen/Qwen2.5-3B-Instruct
external_lib: null
override_config: { }
enable_gradient_checkpointing: True
use_remove_padding: True
actor:
strategy: fsdp # This is for backward-compatibility
ppo_mini_batch_size: 16
ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
ppo_micro_batch_size_per_gpu: 4
use_dynamic_bsz: False
ppo_max_token_len_per_gpu: 12288 # n * ${data.max_prompt_length} + ${data.max_response_length}
grad_clip: 1.0
clip_ratio: 0.2
entropy_coeff: 0.001
use_kl_loss: True # True for GRPO
kl_loss_coef: 0.001 # for grpo
kl_loss_type: low_var_kl # for grpo
ppo_epochs: 1
shuffle: False
ulysses_sequence_parallel_size: 1 # sp size
optim:
lr: 1e-6
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: 300 # must be override by program
fsdp_config:
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
param_offload: False
optimizer_offload: False
fsdp_size: -1
ref:
fsdp_config:
param_offload: True
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
log_prob_micro_batch_size_per_gpu: 160
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
ulysses_sequence_parallel_size: ${actor_rollout_ref.actor.ulysses_sequence_parallel_size} # sp size
rollout:
name: vllm
temperature: 1.0
top_k: -1 # 0 for hf rollout, -1 for vllm rollout
top_p: 1
prompt_length: ${data.max_prompt_length} # not use for opensource
response_length: ${data.max_response_length}
# for vllm rollout
dtype: bfloat16 # should align with FSDP
gpu_memory_utilization: 0.7
ignore_eos: False
enforce_eager: True
free_cache_engine: True
load_format: dummy_dtensor
tensor_model_parallel_size: 4
max_num_batched_tokens: 12288
max_num_seqs: 1024
log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
log_prob_micro_batch_size_per_gpu: 160
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
disable_log_stats: True
enable_chunked_prefill: True # could get higher throughput
# for hf rollout
do_sample: True
use_fire_sampling: False
max_model_len: 12288
# number of responses (i.e. num sample times)
n: 8 # > 1 for grpo
val_kwargs:
do_sample: True

algorithm:
gamma: 1.0
lam: 1.0
adv_estimator: grpo
kl_penalty: kl # how to estimate kl divergence
kl_ctrl:
type: fixed
kl_coef: 0.001
verbose: True
trainer:
balance_batch: True
total_epochs: 1
total_training_steps: 300
project_name: reasoning_gym
experiment_name: count_primes
logger: [ 'console', 'wandb' ]
val_generations_to_log_to_wandb: 0
nnodes: 1
n_gpus_per_node: 4
save_freq: 100
# auto: find the last ckpt to resume. If can't find, start from scratch
resume_mode: auto # or auto or resume_path if
resume_from_path: False
test_freq: 100
critic_warmup: 0
default_hdfs_dir: null
remove_previous_ckpt_in_save: False
del_local_ckpt_after_load: False
default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}


critic:
strategy: fsdp
optim:
lr: 1e-5
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: -1 # must be override by program
model:
path: ~/models/deepseek-llm-7b-chat
tokenizer_path: ${actor_rollout_ref.model.path}
override_config: { }
external_lib: ${actor_rollout_ref.model.external_lib}
enable_gradient_checkpointing: True
use_remove_padding: False
fsdp_config:
param_offload: False
optimizer_offload: False
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
fsdp_size: -1
ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
ppo_micro_batch_size_per_gpu: null
forward_micro_batch_size: ${critic.ppo_micro_batch_size}
forward_micro_batch_size_per_gpu: ${critic.ppo_micro_batch_size_per_gpu}
use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
ppo_max_token_len_per_gpu: 32768 # (${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}) * 2
forward_max_token_len_per_gpu: ${critic.ppo_max_token_len_per_gpu}
ulysses_sequence_parallel_size: 1 # sp size
ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
shuffle: ${actor_rollout_ref.actor.shuffle}
grad_clip: 1.0
cliprange_value: 0.5

# Reward model not used for GRPO
reward_model:
enable: False
strategy: fsdp
model:
input_tokenizer: ${actor_rollout_ref.model.path}
path: ~/models/FsfairX-LLaMA3-RM-v0.1
external_lib: ${actor_rollout_ref.model.external_lib}
use_remove_padding: False
fsdp_config:
min_num_params: 0
param_offload: False
fsdp_size: -1
micro_batch_size: null
micro_batch_size_per_gpu: null
max_length: null
ulysses_sequence_parallel_size: 1
use_dynamic_bsz: ${critic.use_dynamic_bsz}
forward_max_token_len_per_gpu: ${critic.forward_max_token_len_per_gpu}
Loading
Loading