-
Notifications
You must be signed in to change notification settings - Fork 563
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Feature] New config type #787
Open
HAOCHENYE
wants to merge
2
commits into
open-mmlab:new_config
Choose a base branch
from
HAOCHENYE:new_config_type
base: new_config
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+591
−0
Open
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from mmdet.engine.hooks import DetVisualizationHook | ||
from mmdet.visualization import DetLocalVisualizer | ||
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, | ||
LoggerHook, ParamSchedulerHook) | ||
from mmengine.runner import LogProcessor | ||
from mmengine.visualization import LocalVisBackend | ||
|
||
default_scope = None | ||
default_hooks = dict( | ||
timer=dict(type=IterTimerHook), | ||
logger=dict(type=LoggerHook, interval=50), | ||
param_scheduler=dict(type=ParamSchedulerHook), | ||
checkpoint=dict(type=CheckpointHook, interval=1), | ||
sampler_seed=dict(type=DistSamplerSeedHook), | ||
visualization=dict(type=DetVisualizationHook)) | ||
|
||
env_cfg = dict( | ||
cudnn_benchmark=False, | ||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | ||
dist_cfg=dict(backend='nccl'), | ||
) | ||
|
||
vis_backends = [dict(type=LocalVisBackend)] | ||
visualizer = dict( | ||
type=DetLocalVisualizer, vis_backends=vis_backends, name='visualizer') | ||
log_processor = dict(type=LogProcessor, window_size=50, by_epoch=True) | ||
|
||
log_level = 'INFO' | ||
load_from = None | ||
resume = False | ||
|
||
# file_client_args = dict( | ||
# backend='petrel', | ||
# path_mapping=dict({ | ||
# './data/': 's3://openmmlab/datasets/detection/', | ||
# 'data/': 's3://openmmlab/datasets/detection/' | ||
# })) | ||
file_client_args = dict(backend='disk') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from mmcv.ops import nms | ||
from mmcv.transforms import Compose, LoadImageFromFile, TestTimeAug | ||
from mmdet.datasets.transforms import (LoadAnnotations, PackDetInputs, | ||
RandomFlip) | ||
from mmdet.models import DetTTAModel | ||
|
||
from mmyolo.datasets.transforms import LetterResize, YOLOv5KeepRatioResize | ||
|
||
# TODO: Need to solve the problem of multiple file_client_args parameters | ||
# _file_client_args = dict( | ||
# backend='petrel', | ||
# path_mapping=dict({ | ||
# './data/': 's3://openmmlab/datasets/detection/', | ||
# 'data/': 's3://openmmlab/datasets/detection/' | ||
# })) | ||
_file_client_args = dict(backend='disk') | ||
|
||
tta_model = dict( | ||
type=DetTTAModel, | ||
tta_cfg=dict(nms=dict(type=nms, iou_threshold=0.65), max_per_img=300)) | ||
|
||
img_scales = [(640, 640), (320, 320), (960, 960)] | ||
|
||
# LoadImageFromFile | ||
# / | \ | ||
# (RatioResize,LetterResize) (RatioResize,LetterResize) (RatioResize,LetterResize) # noqa | ||
# / \ / \ / \ | ||
# RandomFlip RandomFlip RandomFlip RandomFlip RandomFlip RandomFlip # noqa | ||
# | | | | | | | ||
# LoadAnn LoadAnn LoadAnn LoadAnn LoadAnn LoadAnn | ||
# | | | | | | | ||
# PackDetIn PackDetIn PackDetIn PackDetIn PackDetIn PackDetIn # noqa | ||
|
||
_multiscale_resize_transforms = [ | ||
dict( | ||
type=Compose, | ||
transforms=[ | ||
dict(type=YOLOv5KeepRatioResize, scale=s), | ||
dict( | ||
type=LetterResize, | ||
scale=s, | ||
allow_scale_up=False, | ||
pad_val=dict(img=114)) | ||
]) for s in img_scales | ||
] | ||
|
||
tta_pipeline = [ | ||
dict(type=LoadImageFromFile, file_client_args=_file_client_args), | ||
dict( | ||
type=TestTimeAug, | ||
transforms=[ | ||
_multiscale_resize_transforms, | ||
[dict(type=RandomFlip, prob=1.), | ||
dict(type=RandomFlip, prob=0.)], | ||
[dict(type=LoadAnnotations, with_bbox=True)], | ||
[ | ||
dict( | ||
type=PackDetInputs, | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'pad_param', 'flip', | ||
'flip_direction')) | ||
] | ||
]) | ||
] |
328 changes: 328 additions & 0 deletions
328
mmyolo/configs/rtmdet/rtmdet_l_syncbn_fast_8xb32_300e_coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,328 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
if '_base_': | ||
from .._base_.default_runtime import * | ||
from .._base_.det_p5_tta import * | ||
|
||
from mmcv.transforms import RandomResize | ||
from mmdet.datasets.transforms import (PackDetInputs, Pad, RandomCrop, | ||
RandomFlip, Resize, YOLOXHSVRandomAug) | ||
from mmdet.engine.hooks import PipelineSwitchHook | ||
from mmdet.evaluation import CocoMetric | ||
from mmdet.models import GIoULoss, QualityFocalLoss | ||
from mmdet.models.task_modules import BboxOverlaps2D, MlvlPointGenerator | ||
from mmengine.dataset import DefaultSampler | ||
from mmengine.hooks import EMAHook | ||
from mmengine.optim import CosineAnnealingLR, LinearLR, OptimWrapper | ||
from mmengine.runner import EpochBasedTrainLoop, TestLoop, ValLoop | ||
from torch.nn import BatchNorm2d, SiLU | ||
from torch.optim import AdamW | ||
|
||
from mmyolo.datasets import (BatchShapePolicy, Mosaic, YOLOv5CocoDataset, | ||
yolov5_collate) | ||
from mmyolo.datasets.transforms import LoadAnnotations, YOLOv5MixUp | ||
from mmyolo.models import (CSPNeXt, CSPNeXtPAFPN, ExpMomentumEMA, RTMDetHead, | ||
RTMDetSepBNHeadModule, YOLODetector, | ||
YOLOv5DetDataPreprocessor) | ||
from mmyolo.models.task_modules.assigners import BatchDynamicSoftLabelAssigner | ||
from mmyolo.models.task_modules.coders import DistancePointBBoxCoder | ||
|
||
# -----data related----- | ||
data_root = 'data/coco/' | ||
# Path of train annotation file | ||
train_ann_file = 'annotations/instances_train2017.json' | ||
train_data_prefix = 'train2017/' # Prefix of train image path | ||
# Path of val annotation file | ||
val_ann_file = 'annotations/instances_val2017.json' | ||
val_data_prefix = 'val2017/' # Prefix of val image path | ||
|
||
num_classes = 80 # Number of classes for classification | ||
# Batch size of a single GPU during training | ||
train_batch_size_per_gpu = 32 | ||
# Worker to pre-fetch data for each single GPU during training | ||
train_num_workers = 10 | ||
# persistent_workers must be False if num_workers is 0. | ||
persistent_workers = True | ||
|
||
# -----train val related----- | ||
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs | ||
base_lr = 0.004 | ||
max_epochs = 300 # Maximum training epochs | ||
# Change train_pipeline for final 20 epochs (stage 2) | ||
num_epochs_stage2 = 20 | ||
model_test_cfg = dict( | ||
# The config of multi-label for multi-class prediction. | ||
multi_label=True, | ||
# The number of boxes before NMS | ||
nms_pre=30000, | ||
score_thr=0.001, # Threshold to filter out boxes. | ||
nms=dict(type=nms, iou_threshold=0.65), # NMS type and threshold | ||
max_per_img=300) # Max number of detections of each image | ||
|
||
# ========================Possible modified parameters======================== | ||
# -----data related----- | ||
img_scale = (640, 640) # width, height | ||
# ratio range for random resize | ||
random_resize_ratio_range = (0.1, 2.0) | ||
# Cached images number in mosaic | ||
mosaic_max_cached_images = 40 | ||
# Number of cached images in mixup | ||
mixup_max_cached_images = 20 | ||
# Dataset type, this will be used to define the dataset | ||
dataset_type = YOLOv5CocoDataset | ||
# Batch size of a single GPU during validation | ||
val_batch_size_per_gpu = 32 | ||
# Worker to pre-fetch data for each single GPU during validation | ||
val_num_workers = 10 | ||
|
||
# Config of batch shapes. Only on val. | ||
batch_shapes_cfg = dict( | ||
type=BatchShapePolicy, | ||
batch_size=val_batch_size_per_gpu, | ||
img_size=img_scale[0], | ||
size_divisor=32, | ||
extra_pad_ratio=0.5) | ||
|
||
# -----model related----- | ||
# The scaling factor that controls the depth of the network structure | ||
deepen_factor = 1.0 | ||
# The scaling factor that controls the width of the network structure | ||
widen_factor = 1.0 | ||
# Strides of multi-scale prior box | ||
strides = [8, 16, 32] | ||
|
||
norm_cfg = dict(type=BatchNorm2d) # Normalization config | ||
|
||
# -----train val related----- | ||
lr_start_factor = 1.0e-5 | ||
dsl_topk = 13 # Number of bbox selected in each level | ||
loss_cls_weight = 1.0 | ||
loss_bbox_weight = 2.0 | ||
qfl_beta = 2.0 # beta of QualityFocalLoss | ||
weight_decay = 0.05 | ||
|
||
# Save model checkpoint and validation intervals | ||
save_checkpoint_intervals = 10 | ||
# validation intervals in stage 2 | ||
val_interval_stage2 = 1 | ||
# The maximum checkpoints to keep. | ||
max_keep_ckpts = 3 | ||
# single-scale training is recommended to | ||
# be turned on, which can speed up training. | ||
env_cfg = dict(cudnn_benchmark=True) | ||
|
||
# ===============================Unmodified in most cases==================== | ||
model = dict( | ||
type=YOLODetector, | ||
data_preprocessor=dict( | ||
type=YOLOv5DetDataPreprocessor, | ||
mean=[103.53, 116.28, 123.675], | ||
std=[57.375, 57.12, 58.395], | ||
bgr_to_rgb=False), | ||
backbone=dict( | ||
type=CSPNeXt, | ||
arch='P5', | ||
expand_ratio=0.5, | ||
deepen_factor=deepen_factor, | ||
widen_factor=widen_factor, | ||
channel_attention=True, | ||
norm_cfg=norm_cfg, | ||
act_cfg=dict(type=SiLU, inplace=True)), | ||
neck=dict( | ||
type=CSPNeXtPAFPN, | ||
deepen_factor=deepen_factor, | ||
widen_factor=widen_factor, | ||
in_channels=[256, 512, 1024], | ||
out_channels=256, | ||
num_csp_blocks=3, | ||
expand_ratio=0.5, | ||
norm_cfg=norm_cfg, | ||
act_cfg=dict(type=SiLU, inplace=True)), | ||
bbox_head=dict( | ||
type=RTMDetHead, | ||
head_module=dict( | ||
type=RTMDetSepBNHeadModule, | ||
num_classes=num_classes, | ||
in_channels=256, | ||
stacked_convs=2, | ||
feat_channels=256, | ||
norm_cfg=norm_cfg, | ||
act_cfg=dict(type=SiLU, inplace=True), | ||
share_conv=True, | ||
pred_kernel_size=1, | ||
featmap_strides=strides), | ||
prior_generator=dict( | ||
type=MlvlPointGenerator, offset=0, strides=strides), | ||
bbox_coder=dict(type=DistancePointBBoxCoder), | ||
loss_cls=dict( | ||
type=QualityFocalLoss, | ||
use_sigmoid=True, | ||
beta=qfl_beta, | ||
loss_weight=loss_cls_weight), | ||
loss_bbox=dict(type=GIoULoss, loss_weight=loss_bbox_weight)), | ||
train_cfg=dict( | ||
assigner=dict( | ||
type=BatchDynamicSoftLabelAssigner, | ||
num_classes=num_classes, | ||
topk=dsl_topk, | ||
iou_calculator=dict(type=BboxOverlaps2D)), | ||
allowed_border=-1, | ||
pos_weight=-1, | ||
debug=False), | ||
test_cfg=model_test_cfg, | ||
) | ||
|
||
train_pipeline = [ | ||
dict(type=LoadImageFromFile, file_client_args=file_client_args), | ||
dict(type=LoadAnnotations, with_bbox=True), | ||
dict( | ||
type=Mosaic, | ||
img_scale=img_scale, | ||
use_cached=True, | ||
max_cached_images=mosaic_max_cached_images, | ||
pad_val=114.0), | ||
dict( | ||
type=RandomResize, | ||
# img_scale is (width, height) | ||
scale=(img_scale[0] * 2, img_scale[1] * 2), | ||
ratio_range=random_resize_ratio_range, | ||
resize_type=Resize, | ||
keep_ratio=True), | ||
dict(type=RandomCrop, crop_size=img_scale), | ||
dict(type=YOLOXHSVRandomAug), | ||
dict(type=RandomFlip, prob=0.5), | ||
dict(type=Pad, size=img_scale, pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type=YOLOv5MixUp, | ||
use_cached=True, | ||
max_cached_images=mixup_max_cached_images), | ||
dict(type=PackDetInputs) | ||
] | ||
|
||
train_pipeline_stage2 = [ | ||
dict(type=LoadImageFromFile, file_client_args=file_client_args), | ||
dict(type=LoadAnnotations, with_bbox=True), | ||
dict( | ||
type=RandomResize, | ||
scale=img_scale, | ||
ratio_range=random_resize_ratio_range, | ||
resize_type=Resize, | ||
keep_ratio=True), | ||
dict(type=RandomCrop, crop_size=img_scale), | ||
dict(type=YOLOXHSVRandomAug), | ||
dict(type=RandomFlip, prob=0.5), | ||
dict(type=Pad, size=img_scale, pad_val=dict(img=(114, 114, 114))), | ||
dict(type=PackDetInputs) | ||
] | ||
|
||
test_pipeline = [ | ||
dict(type=LoadImageFromFile, file_client_args=file_client_args), | ||
dict(type=YOLOv5KeepRatioResize, scale=img_scale), | ||
dict( | ||
type=LetterResize, | ||
scale=img_scale, | ||
allow_scale_up=False, | ||
pad_val=dict(img=114)), | ||
dict(type=LoadAnnotations, with_bbox=True, _scope_='mmdet'), | ||
dict( | ||
type=PackDetInputs, | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'pad_param')) | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=train_batch_size_per_gpu, | ||
num_workers=train_num_workers, | ||
persistent_workers=persistent_workers, | ||
pin_memory=True, | ||
collate_fn=dict(type=yolov5_collate), | ||
sampler=dict(type=DefaultSampler, shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=train_ann_file, | ||
data_prefix=dict(img=train_data_prefix), | ||
filter_cfg=dict(filter_empty_gt=True, min_size=32), | ||
pipeline=train_pipeline)) | ||
|
||
val_dataloader = dict( | ||
batch_size=val_batch_size_per_gpu, | ||
num_workers=val_num_workers, | ||
persistent_workers=persistent_workers, | ||
pin_memory=True, | ||
drop_last=False, | ||
sampler=dict(type=DefaultSampler, shuffle=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=val_ann_file, | ||
data_prefix=dict(img=val_data_prefix), | ||
test_mode=True, | ||
batch_shapes_cfg=batch_shapes_cfg, | ||
pipeline=test_pipeline)) | ||
|
||
test_dataloader = val_dataloader | ||
|
||
# Reduce evaluation time | ||
val_evaluator = dict( | ||
type=CocoMetric, | ||
proposal_nums=(100, 1, 10), | ||
ann_file=data_root + val_ann_file, | ||
metric='bbox') | ||
test_evaluator = val_evaluator | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
type=OptimWrapper, | ||
optimizer=dict(type=AdamW, lr=base_lr, weight_decay=weight_decay), | ||
paramwise_cfg=dict( | ||
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) | ||
|
||
# learning rate | ||
param_scheduler = [ | ||
dict( | ||
type=LinearLR, | ||
start_factor=lr_start_factor, | ||
by_epoch=False, | ||
begin=0, | ||
end=1000), | ||
dict( | ||
# use cosine lr from 150 to 300 epoch | ||
type=CosineAnnealingLR, | ||
eta_min=base_lr * 0.05, | ||
begin=max_epochs // 2, | ||
end=max_epochs, | ||
T_max=max_epochs // 2, | ||
by_epoch=True, | ||
convert_to_iter_based=True), | ||
] | ||
|
||
# hooks | ||
default_hooks = dict( | ||
checkpoint=dict( | ||
type=CheckpointHook, | ||
interval=save_checkpoint_intervals, | ||
max_keep_ckpts=max_keep_ckpts # only keep latest 3 checkpoints | ||
)) | ||
|
||
custom_hooks = [ | ||
dict( | ||
type=EMAHook, | ||
ema_type=ExpMomentumEMA, | ||
momentum=0.0002, | ||
update_buffers=True, | ||
strict_load=False, | ||
priority=49), | ||
dict( | ||
type=PipelineSwitchHook, | ||
switch_epoch=max_epochs - num_epochs_stage2, | ||
switch_pipeline=train_pipeline_stage2) | ||
] | ||
|
||
train_cfg = dict( | ||
type=EpochBasedTrainLoop, | ||
max_epochs=max_epochs, | ||
val_interval=save_checkpoint_intervals, | ||
dynamic_intervals=[(max_epochs - num_epochs_stage2, val_interval_stage2)]) | ||
|
||
val_cfg = dict(type=ValLoop) | ||
test_cfg = dict(type=TestLoop) |
96 changes: 96 additions & 0 deletions
96
mmyolo/configs/rtmdet/rtmdet_s_syncbn_fast_8xb32_300e_coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
if '_base_': | ||
from .rtmdet_l_syncbn_fast_8xb32_300e_coco import * | ||
|
||
from mmengine.model import PretrainedInit | ||
|
||
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa | ||
|
||
# ========================modified parameters====================== | ||
deepen_factor = 0.33 | ||
widen_factor = 0.5 | ||
|
||
# ratio range for random resize | ||
random_resize_ratio_range = (0.5, 2.0) | ||
# Number of cached images in mosaic | ||
mosaic_max_cached_images = 40 | ||
# Number of cached images in mixup | ||
mixup_max_cached_images = 20 | ||
|
||
# =======================Unmodified in most cases================== | ||
model.update( | ||
backbone=dict( | ||
deepen_factor=deepen_factor, | ||
widen_factor=widen_factor, | ||
# Since the checkpoint includes CUDA:0 data, | ||
# it must be forced to set map_location. | ||
# Once checkpoint is fixed, it can be removed. | ||
init_cfg=dict( | ||
type=PretrainedInit, | ||
prefix='backbone.', | ||
checkpoint=checkpoint, | ||
map_location='cpu')), | ||
neck=dict( | ||
deepen_factor=deepen_factor, | ||
widen_factor=widen_factor, | ||
), | ||
bbox_head=dict(head_module=dict(widen_factor=widen_factor))) | ||
|
||
train_pipeline = [ | ||
dict(type=LoadImageFromFile, file_client_args=file_client_args), | ||
dict(type=LoadAnnotations, with_bbox=True), | ||
dict( | ||
type=Mosaic, | ||
img_scale=img_scale, | ||
use_cached=True, | ||
max_cached_images=mosaic_max_cached_images, | ||
pad_val=114.0), | ||
dict( | ||
type=RandomResize, | ||
# img_scale is (width, height) | ||
scale=(img_scale[0] * 2, img_scale[1] * 2), | ||
ratio_range=random_resize_ratio_range, # note | ||
resize_type=Resize, | ||
keep_ratio=True), | ||
dict(type=RandomCrop, crop_size=img_scale), | ||
dict(type=YOLOXHSVRandomAug), | ||
dict(type=RandomFlip, prob=0.5), | ||
dict(type=Pad, size=img_scale, pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type=YOLOv5MixUp, | ||
use_cached=True, | ||
max_cached_images=mixup_max_cached_images), | ||
dict(type=PackDetInputs) | ||
] | ||
|
||
train_pipeline_stage2 = [ | ||
dict(type=LoadImageFromFile, file_client_args=file_client_args), | ||
dict(type=LoadAnnotations, with_bbox=True), | ||
dict( | ||
type=RandomResize, | ||
scale=img_scale, | ||
ratio_range=random_resize_ratio_range, # note | ||
resize_type=Resize, | ||
keep_ratio=True), | ||
dict(type=RandomCrop, crop_size=img_scale), | ||
dict(type=YOLOXHSVRandomAug), | ||
dict(type=RandomFlip, prob=0.5), | ||
dict(type=Pad, size=img_scale, pad_val=dict(img=(114, 114, 114))), | ||
dict(type=PackDetInputs) | ||
] | ||
|
||
train_dataloader.update(dataset=dict(pipeline=train_pipeline)) | ||
|
||
custom_hooks = [ | ||
dict( | ||
type=EMAHook, | ||
ema_type=ExpMomentumEMA, | ||
momentum=0.0002, | ||
update_buffers=True, | ||
strict_load=False, | ||
priority=49), | ||
dict( | ||
type=PipelineSwitchHook, | ||
switch_epoch=max_epochs - num_epochs_stage2, | ||
switch_pipeline=train_pipeline_stage2) | ||
] |
60 changes: 60 additions & 0 deletions
60
mmyolo/configs/rtmdet/rtmdet_tiny_syncbn_fast_8xb32_300e_coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
if '_base_': | ||
from .rtmdet_s_syncbn_fast_8xb32_300e_coco import * | ||
|
||
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa | ||
|
||
# ========================modified parameters====================== | ||
deepen_factor = 0.167 | ||
widen_factor = 0.375 | ||
|
||
# ratio range for random resize | ||
random_resize_ratio_range = (0.5, 2.0) | ||
# Number of cached images in mosaic | ||
mosaic_max_cached_images = 20 | ||
# Number of cached images in mixup | ||
mixup_max_cached_images = 10 | ||
|
||
# =======================Unmodified in most cases================== | ||
model.update( | ||
backbone=dict( | ||
deepen_factor=deepen_factor, | ||
widen_factor=widen_factor, | ||
init_cfg=dict(checkpoint=checkpoint)), | ||
neck=dict( | ||
deepen_factor=deepen_factor, | ||
widen_factor=widen_factor, | ||
), | ||
bbox_head=dict(head_module=dict(widen_factor=widen_factor))) | ||
|
||
train_pipeline = [ | ||
dict(type=LoadImageFromFile, file_client_args=file_client_args), | ||
dict(type=LoadAnnotations, with_bbox=True), | ||
dict( | ||
type=Mosaic, | ||
img_scale=img_scale, | ||
use_cached=True, | ||
max_cached_images=mosaic_max_cached_images, # note | ||
random_pop=False, # note | ||
pad_val=114.0), | ||
dict( | ||
type=RandomResize, | ||
# img_scale is (width, height) | ||
scale=(img_scale[0] * 2, img_scale[1] * 2), | ||
ratio_range=random_resize_ratio_range, | ||
resize_type=Resize, | ||
keep_ratio=True), | ||
dict(type=RandomCrop, crop_size=img_scale), | ||
dict(type=YOLOXHSVRandomAug), | ||
dict(type=RandomFlip, prob=0.5), | ||
dict(type=Pad, size=img_scale, pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type=YOLOv5MixUp, | ||
use_cached=True, | ||
random_pop=False, | ||
max_cached_images=mixup_max_cached_images, | ||
prob=0.5), | ||
dict(type=PackDetInputs) | ||
] | ||
|
||
train_dataloader.update(dataset=dict(pipeline=train_pipeline)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
应该是 backend_args