Skip to content

Commit

Permalink
update with names
Browse files Browse the repository at this point in the history
  • Loading branch information
BERENZ committed Feb 4, 2025
1 parent 3084bc1 commit b6c5a58
Show file tree
Hide file tree
Showing 2 changed files with 26 additions and 26 deletions.
26 changes: 13 additions & 13 deletions R/nonprob_dr.R
Original file line number Diff line number Diff line change
Expand Up @@ -254,20 +254,20 @@ nonprob_dr <- function(selection,
combined_terms <- union(terms_out, terms_sel)
combined_formula <- as.formula(paste(outcome[2], paste(combined_terms, collapse = " + "), sep = " ~ "))

Model <- model_frame(
outcome_model_data <- model_frame(
formula = combined_formula,
data = data,
svydesign = svydesign
)
outcome_model_data <- selection_model_data <- Model
n_nons <- nrow(Model$X_nons)
n_rand <- nrow(Model$X_rand)
R_nons <- rep(1, nrow(Model$X_nons))
R_rand <- rep(0, nrow(Model$X_rand))
outcome_model_data <- selection_model_data <- outcome_model_data
n_nons <- nrow(outcome_model_data$X_nons)
n_rand <- nrow(outcome_model_data$X_rand)
R_nons <- rep(1, nrow(outcome_model_data$X_nons))
R_rand <- rep(0, nrow(outcome_model_data$X_rand))
R <- c(R_rand, R_nons)
y_rand <- vector(mode = "numeric", length = n_rand)
y <- c(y_rand, Model$y_nons) # outcome variable for joint model
X <- rbind(Model$X_rand, Model$X_nons)
y <- c(y_rand, outcome_model_data$y_nons) # outcome variable for joint model
X <- rbind(outcome_model_data$X_rand, outcome_model_data$X_nons)

############ working version
if (var_selection == TRUE) {
Expand All @@ -277,7 +277,7 @@ nonprob_dr <- function(selection,
}
beta <- ncvreg::cv.ncvreg(
X = X[loc_nons, -1],
y = Model$y_nons,
y = outcome_model_data$y_nons,
penalty = control_outcome$penalty,
family = family_outcome,
nlambda = nlambda,
Expand All @@ -301,8 +301,8 @@ nonprob_dr <- function(selection,
Xsel <- as.matrix(X[, idx + 1, drop = FALSE])
X <- cbind(1, Xsel)
colnames(X) <- c("(Intercept)", colnames(Xsel))
Model$X_rand <- X[loc_rand, ]
Model$X_nons <- X[loc_nons, ]
outcome_model_data$X_rand <- X[loc_rand, ]
outcome_model_data$X_nons <- X[loc_nons, ]
}
estimation_model <- mm(
X = X,
Expand Down Expand Up @@ -347,11 +347,11 @@ nonprob_dr <- function(selection,
weights_nons <- 1 / ps_nons
N_nons <- sum(weights * weights_nons)
N_rand <- sum(weights_rand)
y_nons <- Model$y_nons
y_nons <- outcome_model_data$y_nons

if (is.null(pop_size)) pop_size <- N_nons
mu_hat <- mu_hatDR(
y = Model$y_nons,
y = outcome_model_data$y_nons,
y_nons = y_nons_pred,
y_rand = y_rand_pred,
weights = weights,
Expand Down
26 changes: 13 additions & 13 deletions R/nonprob_mi.R
Original file line number Diff line number Diff line change
Expand Up @@ -71,11 +71,11 @@ nonprob_mi <- function(outcome,
cond <- TRUE
kk <- control_outcome$k - 1
while (cond) {
OutcomeModel <- model_frame(formula = outcome, data = data, svydesign = svydesign)
X_nons <- OutcomeModel$X_nons
X_rand <- OutcomeModel$X_rand
nons_names <- OutcomeModel$nons_names
y_nons <- OutcomeModel$y_nons
outcome_model_data <- model_frame(formula = outcome, data = data, svydesign = svydesign)
X_nons <- outcome_model_data$X_nons
X_rand <- outcome_model_data$X_rand
nons_names <- outcome_model_data$nons_names
y_nons <- outcome_model_data$y_nons

R_nons <- rep(1, nrow(X_nons))
R_rand <- rep(0, nrow(X_rand))
Expand Down Expand Up @@ -109,7 +109,7 @@ nonprob_mi <- function(outcome,
control = control_outcome,
n_nons = n_nons,
n_rand = n_rand,
model_frame = OutcomeModel$model_frame_rand,
model_frame = outcome_model_data$model_frame_rand,
vars_selection = control_inference$vars_selection,
pop_totals = pop_totals
)
Expand Down Expand Up @@ -165,11 +165,11 @@ nonprob_mi <- function(outcome,
outcome <- outcomes$outcome[[k]]

# model for outcome formula
OutcomeModel <- model_frame(formula = outcome, data = data, svydesign = svydesign)
X_nons <- OutcomeModel$X_nons
X_rand <- OutcomeModel$X_rand
nons_names <- OutcomeModel$nons_names
y_nons <- OutcomeModel$y_nons
outcome_model_data <- model_frame(formula = outcome, data = data, svydesign = svydesign)
X_nons <- outcome_model_data$X_nons
X_rand <- outcome_model_data$X_rand
nons_names <- outcome_model_data$nons_names
y_nons <- outcome_model_data$y_nons

R_nons <- rep(1, nrow(X_nons))
R_rand <- rep(0, nrow(X_rand))
Expand Down Expand Up @@ -237,15 +237,15 @@ nonprob_mi <- function(outcome,
control = control_outcome,
n_nons = n_nons,
n_rand = n_rand,
model_frame = OutcomeModel$model_frame_rand,
model_frame = outcome_model_data$model_frame_rand,
vars_selection = control_inference$vars_selection,
pop_totals = pop_totals
)
y_rand_pred <- model_obj$y_rand_pred
y_nons_pred <- model_obj$y_nons_pred
# parameters <- model_obj$parameters
outcome_list[[k]] <- model_obj$model
outcome_list[[k]]$model_frame <- OutcomeModel$model_frame_rand
outcome_list[[k]]$model_frame <- outcome_model_data$model_frame_rand

# updating probability sample by adding y_hat variable
svydesign <- stats::update(svydesign,
Expand Down

0 comments on commit b6c5a58

Please sign in to comment.