Use the OpenAI API with Ruby! 🤖🩵
Stream text with GPT-4, transcribe and translate audio with Whisper, or create images with DALL·E...
🚢 Hire me | 🎮 Ruby AI Builders Discord | 🐦 Twitter | 🧠 Anthropic Gem | 🚂 Midjourney Gem
- Ruby OpenAI
- Table of Contents
Add this line to your application's Gemfile:
gem "ruby-openai"
And then execute:
$ bundle install
Or install with:
$ gem install ruby-openai
and require with:
require "openai"
- Get your API key from https://platform.openai.com/account/api-keys
- If you belong to multiple organizations, you can get your Organization ID from https://platform.openai.com/account/org-settings
For a quick test you can pass your token directly to a new client:
client = OpenAI::Client.new(access_token: "access_token_goes_here")
For a more robust setup, you can configure the gem with your API keys, for example in an openai.rb
initializer file. Never hardcode secrets into your codebase - instead use something like dotenv to pass the keys safely into your environments.
OpenAI.configure do |config|
config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional.
end
Then you can create a client like this:
client = OpenAI::Client.new
You can still override the config defaults when making new clients; any options not included will fall back to any global config set with OpenAI.configure. e.g. in this example the organization_id, request_timeout, etc. will fallback to any set globally using OpenAI.configure, with only the access_token overridden:
client = OpenAI::Client.new(access_token: "access_token_goes_here")
The default timeout for any request using this library is 120 seconds. You can change that by passing a number of seconds to the request_timeout
when initializing the client. You can also change the base URI used for all requests, eg. to use observability tools like Helicone, and add arbitrary other headers e.g. for openai-caching-proxy-worker:
client = OpenAI::Client.new(
access_token: "access_token_goes_here",
uri_base: "https://oai.hconeai.com/",
request_timeout: 240,
extra_headers: {
"X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
"X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
"Helicone-Auth": "Bearer HELICONE_API_KEY", # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
"helicone-stream-force-format" => "true", # Use this with Helicone otherwise streaming drops chunks # https://github.com/alexrudall/ruby-openai/issues/251
}
)
or when configuring the gem:
OpenAI.configure do |config|
config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
config.uri_base = "https://oai.hconeai.com/" # Optional
config.request_timeout = 240 # Optional
config.extra_headers = {
"X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
"X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
"Helicone-Auth": "Bearer HELICONE_API_KEY" # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
} # Optional
end
You can dynamically pass headers per client object, which will be merged with any headers set globally with OpenAI.configure:
client = OpenAI::Client.new(access_token: "access_token_goes_here")
client.add_headers("X-Proxy-TTL" => "43200")
You can pass Faraday middleware to the client in a block, eg. to enable verbose logging with Ruby's Logger:
client = OpenAI::Client.new do |f|
f.response :logger, Logger.new($stdout), bodies: true
end
To use the Azure OpenAI Service API, you can configure the gem like this:
OpenAI.configure do |config|
config.access_token = ENV.fetch("AZURE_OPENAI_API_KEY")
config.uri_base = ENV.fetch("AZURE_OPENAI_URI")
config.api_type = :azure
config.api_version = "2023-03-15-preview"
end
where AZURE_OPENAI_URI
is e.g. https://custom-domain.openai.azure.com/openai/deployments/gpt-35-turbo
OpenAI parses prompt text into tokens, which are words or portions of words. (These tokens are unrelated to your API access_token.) Counting tokens can help you estimate your costs. It can also help you ensure your prompt text size is within the max-token limits of your model's context window, and choose an appropriate max_tokens
completion parameter so your response will fit as well.
To estimate the token-count of your text:
OpenAI.rough_token_count("Your text")
If you need a more accurate count, try tiktoken_ruby.
There are different models that can be used to generate text. For a full list and to retrieve information about a single model:
client.models.list
client.models.retrieve(id: "text-ada-001")
- GPT-4 (limited beta)
- gpt-4 (uses current version)
- gpt-4-0314
- gpt-4-32k
- GPT-3.5
- gpt-3.5-turbo
- gpt-3.5-turbo-0301
- text-davinci-003
- GPT-3
- text-ada-001
- text-babbage-001
- text-curie-001
GPT is a model that can be used to generate text in a conversational style. You can use it to generate a response to a sequence of messages:
response = client.chat(
parameters: {
model: "gpt-3.5-turbo", # Required.
messages: [{ role: "user", content: "Hello!"}], # Required.
temperature: 0.7,
})
puts response.dig("choices", 0, "message", "content")
# => "Hello! How may I assist you today?"
Quick guide to streaming Chat with Rails 7 and Hotwire
You can stream from the API in realtime, which can be much faster and used to create a more engaging user experience. Pass a Proc (or any object with a #call
method) to the stream
parameter to receive the stream of completion chunks as they are generated. Each time one or more chunks is received, the proc will be called once with each chunk, parsed as a Hash. If OpenAI returns an error, ruby-openai
will raise a Faraday error.
client.chat(
parameters: {
model: "gpt-3.5-turbo", # Required.
messages: [{ role: "user", content: "Describe a character called Anna!"}], # Required.
temperature: 0.7,
stream: proc do |chunk, _bytesize|
print chunk.dig("choices", 0, "delta", "content")
end
})
# => "Anna is a young woman in her mid-twenties, with wavy chestnut hair that falls to her shoulders..."
Note: OpenAPI currently does not report token usage for streaming responses. To count tokens while streaming, try OpenAI.rough_token_count
or tiktoken_ruby. We think that each call to the stream proc corresponds to a single token, so you can also try counting the number of calls to the proc to get the completion token count.
You can use the GPT-4 Vision model to generate a description of an image:
messages = [
{ "type": "text", "text": "What’s in this image?"},
{ "type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
}
]
response = client.chat(
parameters: {
model: "gpt-4-vision-preview", # Required.
messages: [{ role: "user", content: messages}], # Required.
})
puts response.dig("choices", 0, "message", "content")
# => "The image depicts a serene natural landscape featuring a long wooden boardwalk extending straight ahead"
You can set the response_format to ask for responses in JSON (at least for gpt-3.5-turbo-1106
):
response = client.chat(
parameters: {
model: "gpt-3.5-turbo-1106",
response_format: { type: "json_object" },
messages: [{ role: "user", content: "Hello! Give me some JSON please."}],
temperature: 0.7,
})
puts response.dig("choices", 0, "message", "content")
{
"name": "John",
"age": 30,
"city": "New York",
"hobbies": ["reading", "traveling", "hiking"],
"isStudent": false
}
You can stream it as well!
response = client.chat(
parameters: {
model: "gpt-3.5-turbo-1106",
messages: [{ role: "user", content: "Can I have some JSON please?"}],
response_format: { type: "json_object" },
stream: proc do |chunk, _bytesize|
print chunk.dig("choices", 0, "delta", "content")
end
})
{
"message": "Sure, please let me know what specific JSON data you are looking for.",
"JSON_data": {
"example_1": {
"key_1": "value_1",
"key_2": "value_2",
"key_3": "value_3"
},
"example_2": {
"key_4": "value_4",
"key_5": "value_5",
"key_6": "value_6"
}
}
}
You can describe and pass in functions and the model will intelligently choose to output a JSON object containing arguments to call those them. For example, if you want the model to use your method get_current_weather
to get the current weather in a given location:
def get_current_weather(location:, unit: "fahrenheit")
# use a weather api to fetch weather
end
response =
client.chat(
parameters: {
model: "gpt-3.5-turbo-0613",
messages: [
{
"role": "user",
"content": "What is the weather like in San Francisco?",
},
],
tools: [
{
type: "function",
function: {
name: "get_current_weather",
description: "Get the current weather in a given location",
parameters: {
type: :object,
properties: {
location: {
type: :string,
description: "The city and state, e.g. San Francisco, CA",
},
unit: {
type: "string",
enum: %w[celsius fahrenheit],
},
},
required: ["location"],
},
},
}
],
},
)
message = response.dig("choices", 0, "message")
if message["role"] == "assistant" && message["tool_calls"]
function_name = message.dig("tool_calls", "function", "name")
args =
JSON.parse(
message.dig("tool_calls", "function", "arguments"),
{ symbolize_names: true },
)
case function_name
when "get_current_weather"
get_current_weather(**args)
end
end
# => "The weather is nice 🌞"
Hit the OpenAI API for a completion using other GPT-3 models:
response = client.completions(
parameters: {
model: "text-davinci-001",
prompt: "Once upon a time",
max_tokens: 5
})
puts response["choices"].map { |c| c["text"] }
# => [", there lived a great"]
Send a string and some instructions for what to do to the string:
response = client.edits(
parameters: {
model: "text-davinci-edit-001",
input: "What day of the wek is it?",
instruction: "Fix the spelling mistakes"
}
)
puts response.dig("choices", 0, "text")
# => What day of the week is it?
You can use the embeddings endpoint to get a vector of numbers representing an input. You can then compare these vectors for different inputs to efficiently check how similar the inputs are.
response = client.embeddings(
parameters: {
model: "text-embedding-ada-002",
input: "The food was delicious and the waiter..."
}
)
puts response.dig("data", 0, "embedding")
# => Vector representation of your embedding
Put your data in a .jsonl
file like this:
{"prompt":"Overjoyed with my new phone! ->", "completion":" positive"}
{"prompt":"@lakers disappoint for a third straight night ->", "completion":" negative"}
and pass the path to client.files.upload
to upload it to OpenAI, and then interact with it:
client.files.upload(parameters: { file: "path/to/sentiment.jsonl", purpose: "fine-tune" })
client.files.list
client.files.retrieve(id: "file-123")
client.files.content(id: "file-123")
client.files.delete(id: "file-123")
Upload your fine-tuning data in a .jsonl
file as above and get its ID:
response = client.files.upload(parameters: { file: "path/to/sarcasm.jsonl", purpose: "fine-tune" })
file_id = JSON.parse(response.body)["id"]
You can then use this file ID to create a fine tuning job:
response = client.finetunes.create(
parameters: {
training_file: file_id,
model: "gpt-3.5-turbo-0613"
})
fine_tune_id = response["id"]
That will give you the fine-tune ID. If you made a mistake you can cancel the fine-tune model before it is processed:
client.finetunes.cancel(id: fine_tune_id)
You may need to wait a short time for processing to complete. Once processed, you can use list or retrieve to get the name of the fine-tuned model:
client.finetunes.list
response = client.finetunes.retrieve(id: fine_tune_id)
fine_tuned_model = response["fine_tuned_model"]
This fine-tuned model name can then be used in chat completions:
response = client.chat(
parameters: {
model: fine_tuned_model,
messages: [{ role: "user", content: "I love Mondays!"}]
}
)
response.dig("choices", 0, "message", "content")
You can also capture the events for a job:
client.finetunes.list_events(id: fine_tune_id)
Assistants can call models to interact with threads and use tools to perform tasks (see Assistant Overview).
To create a new assistant (see API documentation):
response = client.assistants.create(
parameters: {
model: "gpt-3.5-turbo-1106", # Retrieve via client.models.list. Assistants need 'gpt-3.5-turbo-1106' or later.
name: "OpenAI-Ruby test assistant",
description: nil,
instructions: "You are a helpful assistant for coding a OpenAI API client using the OpenAI-Ruby gem.",
tools: [
{ type: 'retrieval' }, # Allow access to files attached using file_ids
{ type: 'code_interpreter' }, # Allow access to Python code interpreter
],
"file_ids": ["file-123"], # See Files section above for how to upload files
"metadata": { my_internal_version_id: '1.0.0' }
})
assistant_id = response["id"]
Given an assistant_id
you can retrieve
the current field values:
client.assistants.retrieve(id: assistant_id)
You can get a list
of all assistants currently available under the organization:
client.assistants.list
You can modify an existing assistant using the assistant's id (see API documentation):
response = client.assistants.modify(
id: assistant_id,
parameters: {
name: "Modified Test Assistant for OpenAI-Ruby",
metadata: { my_internal_version_id: '1.0.1' }
})
You can delete assistants:
client.assistants.delete(id: assistant_id)
Once you have created an assistant as described above, you need to prepare a Thread
of Messages
for the assistant to work on (see introduction on Assistants). For example, as an initial setup you could do:
# Create thread
response = client.threads.create # Note: Once you create a thread, there is no way to list it
# or recover it currently (as of 2023-12-10). So hold onto the `id`
thread_id = response["id"]
# Add initial message from user (see https://platform.openai.com/docs/api-reference/messages/createMessage)
message_id = client.messages.create(
thread_id: thread_id,
parameters: {
role: "user", # Required for manually created messages
content: "Can you help me write an API library to interact with the OpenAI API please?"
})["id"]
# Retrieve individual message
message = client.messages.retrieve(thread_id: thread_id, id: message_id)
# Review all messages on the thread
messages = client.messages.list(thread_id: thread_id)
To clean up after a thread is no longer needed:
# To delete the thread (and all associated messages):
client.threads.delete(id: thread_id)
client.messages.retrieve(thread_id: thread_id, id: message_id) # -> Fails after thread is deleted
To submit a thread to be evaluated with the model of an assistant, create a Run
as follows (Note: This is one place where OpenAI will take your money):
# Create run (will use instruction/model/tools from Assistant's definition)
response = client.runs.create(thread_id: thread_id,
parameters: {
assistant_id: assistant_id
})
run_id = response['id']
# Retrieve/poll Run to observe status
response = client.runs.retrieve(id: run_id, thread_id: thread_id)
status = response['status']
The status
response can include the following strings queued
, in_progress
, requires_action
, cancelling
, cancelled
, failed
, completed
, or expired
which you can handle as follows:
while true do
response = client.runs.retrieve(id: run_id, thread_id: thread_id)
status = response['status']
case status
when 'queued', 'in_progress', 'cancelling'
puts 'Sleeping'
sleep 1 # Wait one second and poll again
when 'completed'
break # Exit loop and report result to user
when 'requires_action'
# Handle tool calls (see below)
when 'cancelled', 'failed', 'expired'
puts response['last_error'].inspect
break # or `exit`
else
puts "Unknown status response: #{status}"
end
end
If the status
response indicates that the run
is completed
, the associated thread
will have one or more new messages
attached:
# Either retrieve all messages in bulk again, or...
messages = client.messages.list(thread_id: thread_id) # Note: as of 2023-12-11 adding limit or order options isn't working, yet
# Alternatively retrieve the `run steps` for the run which link to the messages:
run_steps = client.run_steps.list(thread_id: thread_id, run_id: run_id)
new_message_ids = run_steps['data'].filter_map { |step|
if step['type'] == 'message_creation'
step.dig('step_details', "message_creation", "message_id")
end # Ignore tool calls, because they don't create new messages.
}
# Retrieve the individual messages
new_messages = new_message_ids.map { |msg_id|
client.messages.retrieve(id: msg_id, thread_id: thread_id)
}
# Find the actual response text in the content array of the messages
new_messages.each { |msg|
msg['content'].each { |content_item|
case content_item['type']
when 'text'
puts content_item.dig('text', 'value')
# Also handle annotations
when 'image_file'
# Use File endpoint to retrieve file contents via id
id = content_item.dig('image_file', 'file_id')
end
}
}
At any time you can list all runs which have been performed on a particular thread or are currently running (in descending/newest first order):
client.runs.list(thread_id: thread_id)
In case you are allowing the assistant to access function
tools (they are defined in the same way as functions during chat completion), you might get a status code of requires_action
when the assistant wants you to evaluate one or more function tools:
def get_current_weather(location:, unit: "celsius")
# Your function code goes here
if location =~ /San Francisco/i
return unit == "celsius" ? "The weather is nice 🌞 at 27°C" : "The weather is nice 🌞 at 80°F"
else
return unit == "celsius" ? "The weather is icy 🥶 at -5°C" : "The weather is icy 🥶 at 23°F"
end
end
if status == 'requires_action'
tools_to_call = response.dig('required_action', 'submit_tool_outputs', 'tool_calls')
my_tool_outputs = tools_to_call.map { |tool|
# Call the functions based on the tool's name
function_name = tool.dig('function', 'name')
arguments = JSON.parse(
tool.dig("function", "arguments"),
{ symbolize_names: true },
)
tool_output = case function_name
when "get_current_weather"
get_current_weather(**arguments)
end
{ tool_call_id: tool['id'], output: tool_output }
}
client.runs.submit_tool_outputs(thread_id: thread_id, run_id: run_id, parameters: { tool_outputs: my_tool_outputs })
end
Note that you have 10 minutes to submit your tool output before the run expires.
Generate images using DALL·E 2 or DALL·E 3!
For DALL·E 2 the size of any generated images must be one of 256x256
, 512x512
or 1024x1024
- if not specified the image will default to 1024x1024
.
response = client.images.generate(parameters: { prompt: "A baby sea otter cooking pasta wearing a hat of some sort", size: "256x256" })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
For DALL·E 3 the size of any generated images must be one of 1024x1024
, 1024x1792
or 1792x1024
. Additionally the quality of the image can be specified to either standard
or hd
.
response = client.images.generate(parameters: { prompt: "A springer spaniel cooking pasta wearing a hat of some sort", size: "1024x1792", quality: "standard" })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
Fill in the transparent part of an image, or upload a mask with transparent sections to indicate the parts of an image that can be changed according to your prompt...
response = client.images.edit(parameters: { prompt: "A solid red Ruby on a blue background", image: "image.png", mask: "mask.png" })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
Create n variations of an image.
response = client.images.variations(parameters: { image: "image.png", n: 2 })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
Pass a string to check if it violates OpenAI's Content Policy:
response = client.moderations(parameters: { input: "I'm worried about that." })
puts response.dig("results", 0, "category_scores", "hate")
# => 5.505014632944949e-05
Whisper is a speech to text model that can be used to generate text based on audio files:
The translations API takes as input the audio file in any of the supported languages and transcribes the audio into English.
response = client.audio.translate(
parameters: {
model: "whisper-1",
file: File.open("path_to_file", "rb"),
})
puts response["text"]
# => "Translation of the text"
The transcriptions API takes as input the audio file you want to transcribe and returns the text in the desired output file format.
You can pass the language of the audio file to improve transcription quality. Supported languages are listed here. You need to provide the language as an ISO-639-1 code, eg. "en" for English or "ne" for Nepali. You can look up the codes here.
response = client.audio.transcribe(
parameters: {
model: "whisper-1",
file: File.open("path_to_file", "rb"),
language: "en" # Optional.
})
puts response["text"]
# => "Transcription of the text"
The speech API takes as input the text and a voice and returns the content of an audio file you can listen to.
response = client.audio.speech(
parameters: {
model: "tts-1",
input: "This is a speech test!",
voice: "alloy"
}
)
File.binwrite('demo.mp3', response)
# => mp3 file that plays: "This is a speech test!"
HTTP errors can be caught like this:
begin
OpenAI::Client.new.models.retrieve(id: "text-ada-001")
rescue Faraday::Error => e
raise "Got a Faraday error: #{e}"
end
After checking out the repo, run bin/setup
to install dependencies. You can run bin/console
for an interactive prompt that will allow you to experiment.
To install this gem onto your local machine, run bundle exec rake install
.
To run all tests, execute the command bundle exec rake
, which will also run the linter (Rubocop). This repository uses VCR to log API requests.
Warning
If you have an OPENAI_ACCESS_TOKEN
in your ENV
, running the specs will use this to run the specs against the actual API, which will be slow and cost you money - 2 cents or more! Remove it from your environment with unset
or similar if you just want to run the specs against the stored VCR responses.
First run the specs without VCR so they actually hit the API. This will cost 2 cents or more. Set OPENAI_ACCESS_TOKEN in your environment or pass it in like this:
OPENAI_ACCESS_TOKEN=123abc bundle exec rspec
Then update the version number in version.rb
, update CHANGELOG.md
, run bundle install
to update Gemfile.lock, and then run bundle exec rake release
, which will create a git tag for the version, push git commits and tags, and push the .gem
file to rubygems.org.
Bug reports and pull requests are welcome on GitHub at https://github.com/alexrudall/ruby-openai. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the code of conduct.
The gem is available as open source under the terms of the MIT License.
Everyone interacting in the Ruby OpenAI project's codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.