Skip to content

mtkresearch/Model-based-kernelized-RL

Repository files navigation

Project Title

Description

This project involves testing different algorithms in kernel-based reward-free reinforcement learning (RL). The following options are available for configuration:

Kernel Options for Transition Probability (--P_kernel)

  • RBF
  • Matern_smoothness_1.5
  • Matern_smoothness_2.5

Model Options (--model)

  • Benchmark_Model
  • Greedy_Max_Variance
  • without_generative_model
  • Generative_model

Parameters

  • --beta: Upper Confidence Bound (UCB) coefficient
  • --num_runs: Number of sequential runs
  • --alpha: Regularization hyperparameter for Gaussian Process (GP) regression used to generate the reward function ( r ) and transition probability ( P ).

Installing Required Libraries

To install the required libraries, you can use:

pip install -r requirements.txt

Rewards and P Folder

If you run test_all_algos.py for the first time, it will draw the reward function ( r ) and the transition probability ( P ) in the Reproducing Kernel Hilbert Space (RKHS) and store them in the Rewards_and_P folder. For subsequent runs, it will load these functions from this folder.

An example folder, Rewards_and_P_experiment1, is provided along with the results of the tested algorithms in the experiment1 folder. The final_plots.py script generates graphs based on the data stored in the experiment1 folder. Feel free to modify the paths in the script to plot your new experiments.

Examples

Here are examples of how to run the code:

python test_all_algos.py --P_kernel RBF --beta 0.1 --num_runs 80 --model Benchmark_Model --alpha 0.01
python test_all_algos.py --P_kernel Matern_smoothness_1.5 --beta 0.1 --num_runs 80 --model Greedy_Max_Variance --alpha 0.5
python test_all_algos.py --P_kernel Matern_smoothness_2.5 --beta 0.1 --num_runs 80 --model without_generative_model --alpha 0.5
python test_all_algos.py --P_kernel Matern_smoothness_2.5 --beta 0.1 --num_runs 80 --model Generative_model --alpha 0.5

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages