Skip to content

mljs/regression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

06130ae · Oct 17, 2024
May 3, 2024
Oct 16, 2024
Jun 29, 2019
Jun 29, 2017
Jun 29, 2019
Oct 17, 2024
Feb 18, 2015
May 3, 2024
Oct 16, 2024
Oct 17, 2024
May 3, 2024

Repository files navigation

ml-regression

NPM version build status npm download

Regression algorithms.

Installation

$ npm install ml-regression

Examples

Simple linear regression

const SLR = require("ml-regression").SLR;
let inputs = [80, 60, 10, 20, 30];
let outputs = [20, 40, 30, 50, 60];

let regression = new SLR(inputs, outputs);
regression.toString(3) === "f(x) = - 0.265 * x + 50.6";

External links

Check this cool blog post for a detailed example: https://hackernoon.com/machine-learning-with-javascript-part-1-9b97f3ed4fe5

Polynomial regression

const PolynomialRegression = require("ml-regression").PolynomialRegression;
const x = [50, 50, 50, 70, 70, 70, 80, 80, 80, 90, 90, 90, 100, 100, 100];
const y = [
  3.3, 2.8, 2.9, 2.3, 2.6, 2.1, 2.5, 2.9, 2.4, 3.0, 3.1, 2.8, 3.3, 3.5, 3.0,
];
const degree = 5; // setup the maximum degree of the polynomial
const regression = new PolynomialRegression(x, y, degree);
console.log(regression.predict(80)); // Apply the model to some x value. Prints 2.6.
console.log(regression.coefficients); // Prints the coefficients in increasing order of power (from 0 to degree).
console.log(regression.toString(3)); // Prints a human-readable version of the function.
console.log(regression.toLaTeX());

License

MIT