-
Notifications
You must be signed in to change notification settings - Fork 70
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[DRAFT] Sagemaker integration #151
Changes from 5 commits
c364305
8da7d11
acec8b3
a9f9d5c
8ce69cf
2162ea8
6da4439
f6e7778
9e25570
541ddb7
4f2df2d
6ac73d7
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
ARG AWS_REGION | ||
|
||
# SageMaker PyTorch image | ||
FROM 763104351884.dkr.ecr.${AWS_REGION}.amazonaws.com/pytorch-training:2.1.0-gpu-py310-cu121-ubuntu20.04-sagemaker | ||
|
||
# Run custom installation of libraries | ||
# RUN pip install xxx | ||
# RUN apt-get update && apt-get install -y xxx | ||
# ENV <your environment variables> | ||
# etc.... | ||
|
||
# Remove the conda installed symlink for libcurl, which causes an error with curl. | ||
# Fixes the following error: | ||
# curl: /opt/conda/lib/libcurl.so.4: no version information available (required by curl) | ||
RUN rm /opt/conda/lib/libcurl.so.4 | ||
|
||
ENV PATH="/opt/ml/code:${PATH}" | ||
|
||
# this environment variable is used by the SageMaker PyTorch container to determine our user code directory. | ||
ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code | ||
|
||
# /opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory to store your user code. | ||
COPY . /opt/ml/code/ | ||
RUN rm /opt/ml/code/setup.py | ||
|
||
RUN pip install -r /opt/ml/code/requirements.txt | ||
RUN pip uninstall flash-attn -y | ||
RUN pip install flash-attn>=2.2 | ||
# # Prevent sagemaker from installing requirements again. | ||
# RUN rm /opt/ml/code/setup.py | ||
RUN rm /opt/ml/code/requirements.txt | ||
|
||
# Defines a script entrypoint | ||
ENV SAGEMAKER_PROGRAM open_lm/main.py |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
accum-freq: 4 | ||
beta1: 0.9 | ||
beta2: 0.95 | ||
data-key: "json" | ||
dataset-resampled: "" | ||
# delete-previous-checkpoint: False | ||
# Total 25B * 40 = 1T tokens | ||
epochs: 40 | ||
fsdp: "" | ||
fsdp-limit-all-gathers: "" | ||
# grad-checkpointing: False | ||
grad-clip-norm: 1 | ||
log-every-n-steps: 20 | ||
model: "open_lm_7b" | ||
name: "sample_7b" | ||
precision: "amp_bfloat16" | ||
report-to: "wandb" | ||
seed: 124 | ||
train-data-mix-weights: 0.725 0.275 | ||
train-data: TODO | ||
train-num-samples: 25_000_000_000 | ||
wandb-project-name: "lm1" | ||
workers: 4 | ||
|
||
# Some important parameters, double checked with Mitchell: | ||
batch-size: 16 | ||
ffn-type: swiglu | ||
# fsdp-amp: False | ||
fsdp-pure-bf16: "" | ||
fsdp-backward-prefetch: "" | ||
lr: 3e-4 | ||
lr-cooldown-end: 3e-5 | ||
model-norm: "gain_only_lp_layer_norm" | ||
qk-norm: "" | ||
warmup: 5000 | ||
wd: 0.1 | ||
z-loss-coefficient: 1e-4 |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
import argparse | ||
import time | ||
import os | ||
import subprocess | ||
import yaml | ||
from datetime import datetime | ||
|
||
import boto3 | ||
import sagemaker | ||
from sagemaker import get_execution_role | ||
from sagemaker.pytorch import PyTorch | ||
from sagemaker.inputs import TrainingInput | ||
from sagemaker_ssh_helper.wrapper import SSHEstimatorWrapper | ||
from sagemaker_train.sm_utils import get_arn, get_remote_sync | ||
|
||
|
||
NAME = "openlm" | ||
INSTANCE_MAPPER = { | ||
"p4": "ml.p4d.24xlarge", | ||
"p4de": "ml.p4de.24xlarge", | ||
"p5": "ml.p5.48xlarge", | ||
} | ||
|
||
|
||
def run_command(command): | ||
subprocess.run(command, shell=True, check=True) | ||
|
||
|
||
def get_image(user, region, instance_type, build_image=False, update_image=False, profile="poweruser"): | ||
os.environ["AWS_PROFILE"] = f"{profile}" | ||
account = subprocess.getoutput( | ||
f"aws --region {region} --profile {profile} sts get-caller-identity --query Account --output text" | ||
) | ||
algorithm_name = f"{user}-{NAME}" | ||
fullname = f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest" | ||
if not build_image and not update_image: | ||
return fullname | ||
|
||
login_cmd = f"aws ecr get-login-password --region {region} --profile {profile} | docker login --username AWS --password-stdin" | ||
|
||
if build_image: | ||
print("Building container") | ||
commands = [ | ||
f"{login_cmd} 763104351884.dkr.ecr.{region}.amazonaws.com", | ||
f"docker build -f sagemaker_train/Dockerfile --build-arg AWS_REGION={region} --build-arg DOCKER_IGNORE_FILE=sagemaker_train/.dockerignore -t {algorithm_name} .", | ||
f"docker tag {algorithm_name} {fullname}", | ||
f"{login_cmd} {fullname}", | ||
f"aws --region {region} ecr describe-repositories --repository-names {algorithm_name} || aws --region {region} ecr create-repository --repository-name {algorithm_name}", | ||
] | ||
elif update_image: | ||
print("Updating container") | ||
commands = [ | ||
f"docker build -f sagemaker_train/update.dockerfile --build-arg DOCKER_IGNORE_FILE=sagemaker_train/.dockerignore --build-arg BASE_DOCKER={algorithm_name} -t {algorithm_name} .", | ||
f"docker tag {algorithm_name} {fullname}", | ||
f"{login_cmd} {fullname}", | ||
] | ||
|
||
print("\n".join(commands)) | ||
subprocess.run("\n".join(commands), shell=True) | ||
run_command(f"docker push {fullname}") | ||
print("Sleeping for 5 seconds to ensure push succeeded") | ||
time.sleep(5) | ||
|
||
return f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest" | ||
|
||
|
||
def main(): | ||
# Use first line of file docstring as description if it exists. | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--build", action="store_true", help="Build image from scratch") | ||
parser.add_argument("--update", action="store_true", help="Update code in image, don't re-build") | ||
parser.add_argument("--local", action="store_true") | ||
parser.add_argument("--user", required=True, help="User name") | ||
parser.add_argument("--cfg-path", required=True, help="Launch config") | ||
|
||
# AWS profile args | ||
parser.add_argument("--region", default="us-east-1", help="AWS region") | ||
parser.add_argument("--profile", default="poweruser", help="AWS profile to use") | ||
parser.add_argument("--arn", default=None, help="If None, reads from SAGEMAKER_ARN env var") | ||
parser.add_argument( | ||
"--s3-remote-sync", default=None, help="S3 path to sync to. If none, reads from S3_REMOTE_SYNC env var" | ||
) | ||
|
||
# Instance args | ||
parser.add_argument("--instance-count", default=1, type=int, help="Number of instances") | ||
parser.add_argument("--instance-type", default="p4de", choices=list(INSTANCE_MAPPER.keys())) | ||
parser.add_argument("--spot-instance", action="store_true") | ||
args = parser.parse_args() | ||
|
||
setup_tmp_name = "./setup_renamed_for_sagemaker.py" | ||
# print(f"Renaming ./setup.py to {setup_tmp_name}") | ||
# os.rename("./setup.py", setup_tmp_name) | ||
try: | ||
main_after_setup_move(args) | ||
except: | ||
# os.rename(setup_tmp_name, "./setup.py") | ||
raise | ||
|
||
|
||
def main_after_setup_move(args): | ||
image = get_image( | ||
args.user, | ||
args.region, | ||
args.instance_type, | ||
build_image=args.build, | ||
update_image=args.update, | ||
profile=args.profile, | ||
) | ||
|
||
########## | ||
# Create session and make sure of account and region | ||
########## | ||
sagemaker_session = sagemaker.Session(boto_session=boto3.session.Session(region_name=args.region)) | ||
|
||
# provide a pre-existing role ARN as an alternative to creating a new role | ||
role = get_arn(args.arn) | ||
role_name = role.split(["/"][-1]) | ||
print(f"SageMaker Execution Role:{role}") | ||
print(f"The name of the Execution role: {role_name[-1]}") | ||
|
||
client = boto3.client("sts") | ||
account = client.get_caller_identity()["Account"] | ||
print(f"AWS account:{account}") | ||
|
||
session = boto3.session.Session() | ||
region = session.region_name | ||
print(f"AWS region:{region}") | ||
|
||
########## | ||
# Configure the training | ||
########## | ||
base_job_name = f"{args.user.replace('.', '-')}-{NAME}" | ||
|
||
checkpoint_local_path = "/opt/ml/checkpoints" | ||
|
||
with open(args.cfg_path, "r") as f: | ||
train_args = yaml.safe_load(f) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Now that openlm supports a --config, let's just pass the config to openlm directly, with --config args.cfg_path? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Tried this but it seems that it gives some typing errors when passed through sagemaker: Leaving it as is for now |
||
train_args["logs"] = checkpoint_local_path if not args.local else "./logs/debug" | ||
|
||
def get_job_name(base, train_args): | ||
now = datetime.now() | ||
# Format example: 2023-03-03-10-14-02-324 | ||
now_ms_str = f"{now.microsecond // 1000:03d}" | ||
date_str = f"{now.strftime('%Y-%m-%d-%H-%M-%S')}-{now_ms_str}" | ||
|
||
job_name = "_".join([base, date_str]) | ||
|
||
return job_name | ||
|
||
job_name = get_job_name(base_job_name, train_args) | ||
|
||
s3_remote_sync = get_remote_sync(args.s3_remote_sync) | ||
output_root = f"{s3_remote_sync}/sagemaker/{args.user}/{NAME}/" | ||
output_s3 = os.path.join(output_root, job_name) | ||
|
||
estimator = PyTorch( | ||
entry_point="open_lm/main.py", | ||
base_job_name=base_job_name, | ||
hyperparameters=train_args, | ||
role=role, | ||
image_uri=image, | ||
instance_count=int(args.instance_count), | ||
instance_type="local_gpu" if args.local else INSTANCE_MAPPER[args.instance_type], | ||
train_use_spot_instances=True if args.spot_instance else False, | ||
# sagemaker_session=sagemaker_session, | ||
output_path=output_s3, | ||
job_name=job_name, | ||
checkpoint_s3_uri=None if args.local else f"{output_s3}/checkpoint", | ||
checkpoint_local_path=None if args.local else checkpoint_local_path, | ||
code_location=output_s3, | ||
# Training using SMDataParallel Distributed Training Framework | ||
distribution={"torch_distributed": {"enabled": True}}, | ||
# Max run 10 days | ||
max_run=5 * 24 * 60 * 60, | ||
max_wait=5 * 24 * 60 * 60 if args.spot_instance else None, | ||
# max_run=60 * 60, # 60 minutes | ||
input_mode="FastFile", | ||
# environment={"TORCH_DISTRIBUTED_DEBUG": "DETAIL", "TORCH_CPP_LOG_LEVEL": "INFO"}, | ||
keep_alive_period_in_seconds=30 * 60 if not args.spot_instance else None, # 30 minutes | ||
dependencies=[SSHEstimatorWrapper.dependency_dir()], | ||
) | ||
|
||
estimator.fit() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
import os | ||
|
||
|
||
def get_arn(arn): | ||
if arn is not None: | ||
return arn | ||
else: | ||
return os.environ["SAGEMAKER_ARN"] | ||
|
||
|
||
def get_remote_sync(s3_remote_sync): | ||
if s3_remote_sync is not None: | ||
return s3_remote_sync | ||
else: | ||
return os.environ["S3_REMOTE_SYNC"] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
ARG BASE_DOCKER | ||
# Dockerfile that updates the container with new code. | ||
# SageMaker PyTorch image | ||
FROM ${BASE_DOCKER} | ||
|
||
# /opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory to store your user code. | ||
COPY . /opt/ml/code/ | ||
|
||
# RUN pip install -e /opt/ml/code/ | ||
|
||
# # Prevent sagemaker from installing requirements again. | ||
RUN rm /opt/ml/code/requirements.txt | ||
|
||
ENV SAGEMAKER_PROGRAM open_lm/main.py |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If you set this to True instead of empty string, the error you mentioned should go away when passing the config via path (and similarly for all other keys which have a "" value - set them to True instead)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I tried that and it still gives the same error. It seems to read everything as a string.
Just to double-check: The way to pass a config is to just do
train_args = {"config": args.cfg_path}
instead of the yaml.safe_load(f), right?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hmm yeah that should be all you need. And you rebuilt the docker container after that change right? Will try it out later today, maybe there's something wrong with the parsing logic.