Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DRAFT] Sagemaker integration #151

Merged
merged 12 commits into from
Dec 20, 2023
4 changes: 4 additions & 0 deletions .dockerignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
venv
wandb
logs
checkpoints
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -139,5 +139,6 @@ weights*
out*
tests/assets/*
.vscode/
secrets.env
checkpoints/
experiments/
Empty file added sagemaker_train/.dockerignore
Empty file.
34 changes: 34 additions & 0 deletions sagemaker_train/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
ARG AWS_REGION

# SageMaker PyTorch image
FROM 763104351884.dkr.ecr.${AWS_REGION}.amazonaws.com/pytorch-training:2.1.0-gpu-py310-cu121-ubuntu20.04-sagemaker

# Run custom installation of libraries
# RUN pip install xxx
# RUN apt-get update && apt-get install -y xxx
# ENV <your environment variables>
# etc....

# Remove the conda installed symlink for libcurl, which causes an error with curl.
# Fixes the following error:
# curl: /opt/conda/lib/libcurl.so.4: no version information available (required by curl)
RUN rm /opt/conda/lib/libcurl.so.4

ENV PATH="/opt/ml/code:${PATH}"

# this environment variable is used by the SageMaker PyTorch container to determine our user code directory.
ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code

# /opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory to store your user code.
COPY . /opt/ml/code/
RUN rm /opt/ml/code/setup.py

RUN pip install -r /opt/ml/code/requirements.txt
RUN pip uninstall flash-attn -y
RUN pip install flash-attn>=2.2
# # Prevent sagemaker from installing requirements again.
# RUN rm /opt/ml/code/setup.py
RUN rm /opt/ml/code/requirements.txt

# Defines a script entrypoint
ENV SAGEMAKER_PROGRAM open_lm/main.py
15 changes: 15 additions & 0 deletions sagemaker_train/Dockerfile_update
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
ARG BASE_DOCKER
# Dockerfile that updates the container with new code.
# SageMaker PyTorch image
FROM ${BASE_DOCKER}

# /opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory to store your user code.
COPY . /opt/ml/code/

# RUN pip install -e /opt/ml/code/

# Prevent sagemaker from installing requirements again.
RUN rm /opt/ml/code/setup.py
RUN rm /opt/ml/code/requirements.txt

ENV SAGEMAKER_PROGRAM open_lm/main.py
38 changes: 38 additions & 0 deletions sagemaker_train/cfg_sample.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
accum-freq: 4
beta1: 0.9
beta2: 0.95
data-key: "json"
dataset-resampled: True
# delete-previous-checkpoint: False
# Total 25B * 40 = 1T tokens
epochs: 40
fsdp: True
fsdp-limit-all-gathers: True
# grad-checkpointing: False
grad-clip-norm: 1
log-every-n-steps: 20
model: "open_lm_7b"
name: "sample_7b"
precision: "amp_bfloat16"
report-to: "wandb"
seed: 124
train-data-mix-weights: [0.725, 0.275]
train-data: ["TODO"]
train-num-samples: 25_000_000_000
wandb-project-name: "lm1"
workers: 4
logs: /opt/ml/checkpoints/

# Some important parameters, double checked with Mitchell:
batch-size: 16
ffn-type: swiglu
# fsdp-amp: False
fsdp-pure-bf16: True
fsdp-backward-prefetch: True
lr: 3.e-4
lr-cooldown-end: 3.e-5
model-norm: "gain_only_lp_layer_norm"
qk-norm: True
warmup: 5000
wd: 0.1
z-loss-coefficient: 1.e-4
194 changes: 194 additions & 0 deletions sagemaker_train/launch_sagemaker_train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,194 @@
import argparse
import time
import os
import subprocess
from datetime import datetime
from pathlib import Path

import boto3
import sagemaker
from sagemaker.pytorch import PyTorch


NAME = "openlm-main"
INSTANCE_MAPPER = {
"p4": "ml.p4d.24xlarge",
"p4de": "ml.p4de.24xlarge",
"p5": "ml.p5.48xlarge",
}


def run_command(command):
print(f"=> {command}")
subprocess.run(command, shell=True, check=True)


def get_image(user, instance_type, build_type=None, profile="poweruser", region="us-east-1"):
os.environ["AWS_PROFILE"] = f"{profile}"
account = subprocess.getoutput(
f"aws --region {region} --profile {profile} sts get-caller-identity --query Account --output text"
)
docker_dir = Path(__file__).parent
if instance_type in ("p4", "p4de"):
algorithm_name = f"{user}-{NAME}-p4"
dockerfile_base = docker_dir / "Dockerfile"
dockerfile_update = docker_dir / "Dockerfile_update"
elif instance_type == "p5":
algorithm_name = f"{user}-{NAME}-p5"
dockerfile_base = docker_dir / "Dockerfile"
dockerfile_update = docker_dir / "Dockerfile_update"
else:
raise ValueError(f"Unknown instance_type: {instance_type}")
fullname = f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest"
if build_type is None:
return fullname

login_cmd = f"aws ecr get-login-password --region {region} --profile {profile} | docker login --username AWS --password-stdin"

if build_type == "full":
print("Building container")
commands = [
# Log in to Sagemaker account to get image.
f"{login_cmd} 763104351884.dkr.ecr.{region}.amazonaws.com",
f"docker build --progress=plain -f {dockerfile_base} --build-arg AWS_REGION={region} -t {algorithm_name} .",
f"docker tag {algorithm_name} {fullname}",
f"{login_cmd} {fullname}",
(
f"aws --region {region} ecr describe-repositories --repository-names {algorithm_name} || "
f"aws --region {region} ecr create-repository --repository-name {algorithm_name}"
),
]
elif build_type == "update":
print("Updating container")
commands = [
f"docker build --progress=plain -f {dockerfile_update} --build-arg BASE_DOCKER={algorithm_name} -t {algorithm_name} .",
f"docker tag {algorithm_name} {fullname}",
f"{login_cmd} {fullname}",
]
else:
raise ValueError(f"Unknown build_type: {build_type}")

# Create command, making sure to exit if any part breaks.
command = "\n".join([f"{x} || exit 1" for x in commands])
run_command(command)
run_command(f"docker push {fullname}")
print("Sleeping for 5 seconds to ensure push succeeded")
time.sleep(5)
return f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest"


def main():
# Use first line of file docstring as description if it exists.
parser = argparse.ArgumentParser()
parser.add_argument("--build-type", choices=["full", "update"], help="Build image from scratch")
parser.add_argument("--local", action="store_true")
parser.add_argument("--user", required=True, help="User name")
parser.add_argument("--cfg-path", required=True, help="Launch config")

# AWS profile args
parser.add_argument("--region", default="us-east-1", help="AWS region")
parser.add_argument("--profile", default="poweruser", help="AWS profile to use")
parser.add_argument("--arn", default=None, help="If None, reads from SAGEMAKER_ARN env var")
parser.add_argument(
"--s3-remote-sync", default=None, help="S3 path to sync to. If none, reads from S3_REMOTE_SYNC env var"
)

# Instance args
parser.add_argument("--instance-count", default=1, type=int, help="Number of instances")
parser.add_argument("--instance-type", default="p4de", choices=list(INSTANCE_MAPPER.keys()))
parser.add_argument("--spot-instance", action="store_true")

args = parser.parse_args()
main_after_setup_move(args)


def main_after_setup_move(args):
if args.arn is None:
assert "SAGEMAKER_ARN" in os.environ, "Please specify --arn or set the SAGEMAKER_ARN environment variable"
args.arn = os.environ["SAGEMAKER_ARN"]

if args.s3_remote_sync is None:
assert (
"S3_REMOTE_SYNC" in os.environ
), "Please specify --s3-remote-sync or set the S3_REMOTE_SYNC environment variable"
args.s3_remote_sync = os.environ["S3_REMOTE_SYNC"]

image = get_image(
args.user,
args.instance_type,
region=args.region,
build_type=args.build_type,
profile=args.profile,
)

##########
# Create session and make sure of account and region
##########
sagemaker_session = sagemaker.Session(boto_session=boto3.session.Session(region_name=args.region))

role = args.arn
# provide a pre-existing role ARN as an alternative to creating a new role
role_name = role.split(["/"][-1])
print(f"SageMaker Execution Role:{role}")
print(f"The name of the Execution role: {role_name[-1]}")

client = boto3.client("sts")
account = client.get_caller_identity()["Account"]
print(f"AWS account:{account}")

session = boto3.session.Session()
region = session.region_name
print(f"AWS region:{region}")

##########
# Configure the training
##########
base_job_name = f"{args.user.replace('.', '-')}-{NAME}"

checkpoint_local_path = "/opt/ml/checkpoints"

def get_job_name(base):
now = datetime.now()
# Format example: 2023-03-03-10-14-02-324
now_ms_str = f"{now.microsecond // 1000:03d}"
date_str = f"{now.strftime('%Y-%m-%d-%H-%M-%S')}-{now_ms_str}"

job_name = "_".join([base, date_str])

return job_name

job_name = get_job_name(base_job_name)

output_root = f"{args.s3_remote_sync}/sagemaker/{args.user}/{NAME}/"
output_s3 = os.path.join(output_root, job_name)

estimator = PyTorch(
entry_point="open_lm/main.py",
sagemaker_session=sagemaker_session,
base_job_name=base_job_name,
hyperparameters={"config": args.cfg_path},
role=role,
image_uri=image,
instance_count=args.instance_count,
instance_type="local_gpu" if args.local else INSTANCE_MAPPER[args.instance_type],
train_use_spot_instances=args.spot_instance,
output_path=output_s3,
job_name=job_name,
checkpoint_s3_uri=None if args.local else f"{output_s3}/checkpoint",
checkpoint_local_path=None if args.local else checkpoint_local_path,
code_location=output_s3,
# Training using SMDataParallel Distributed Training Framework
distribution={"torch_distributed": {"enabled": True}},
# Max run 5 days
max_run=5 * 24 * 60 * 60,
max_wait=5 * 24 * 60 * 60 if args.spot_instance else None,
input_mode="FastFile",
# environment={"TORCH_DISTRIBUTED_DEBUG": "DETAIL", "TORCH_CPP_LOG_LEVEL": "INFO"},
keep_alive_period_in_seconds=30 * 60 if not args.spot_instance else None, # 30 minutes
)

estimator.fit()


if __name__ == "__main__":
main()
Loading