Skip to content

mikeleikele/TransportScenariosGeneration

Repository files navigation

Traffic Scenarios Generation

Script Usage

This repository contains a script for running Traffic Scenarios Generation experiments with several configurations. Below are the command-line arguments and their descriptions.

Command-Line Arguments

  1. num_case (type: int)

    • Description: The case number for the experiment. You can find the different experiment cases in NeuroExperiment.py.
    • Example: --num_case 1
  2. experiment_name_suffix (type: string)

    • Description: Suffix to add to the experiment name for identification. When performing multiple repetitions of an experiment, this string will indicate the folder suffix, followed by the seed number used .
    • Example: --experiment_name_suffix METR16_experiment
  3. main_folder (type: string)

    • Description: The folder path where experiment results will be saved.
    • Example: --main_folder "experiments"
  4. repeat (type: int)

    • Description: The number of times to repeat the experiment with several random seeds.
    • Example: --repeat 5
  5. optimization (type: yes/no)

    • Description: Whether to perform BO hyperparameters optimization.
    • Example: --optimization yes
  6. load_model (type: yes/no)

    • Description: Whether to load a pre-trained model.
    • Example: --load_model yes
  7. train_models (type: yes/no)

    • Description: Whether to train the model again.
    • Example: --train_models yes

Example Usage

To run the script with specific arguments, use the following command format:

python script_name.py --num_case <num_case> --experiment_name_suffix <experiment_name_suffix> --main_folder <main_folder> --repeat <repeat> --optimization <optimization> --load_model <load_model> --train_models <train_models>

Example

python3 test.py --neuroD --num_case 1 --experiment_name_suffix 2024_07_10_METR_16 --main_folder 2024_07_10_METR_16__OPT_split --repeation 5 --optimization yes --load_model no --train_models yes

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published