Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create Docker headless version #48

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
FROM pytorch/pytorch:2.4.0-cuda12.4-cudnn9-devel AS builder

# Install build dependencies
RUN apt-get update && \
apt-get install -y ffmpeg build-essential htop git python3-onnx rdfind

WORKDIR /app

# Add the application files
COPY . /app/

# Initialize and update git submodules
RUN cd /app && \
git init && \
git submodule init && \
git submodule update --init --recursive && \
git submodule update --recursive && \
rm -rf .git */.git **/.git # Remove all .git directories

# Setup conda and PyTorch
RUN conda config --set always_yes true && conda init
RUN conda install cuda=12.4 pytorch==2.4.0 torchvision==0.19.0 pytorch-cuda=12.4 -c pytorch -c nvidia

# Install Kaolin dependencies first
RUN conda run -n base pip install -r https://raw.githubusercontent.com/NVIDIAGameWorks/kaolin/v0.17.0/tools/build_requirements.txt \
-r https://raw.githubusercontent.com/NVIDIAGameWorks/kaolin/v0.17.0/tools/viz_requirements.txt \
-r https://raw.githubusercontent.com/NVIDIAGameWorks/kaolin/v0.17.0/tools/requirements.txt

# Now install Kaolin with the correct version
RUN conda run -n base pip install kaolin==0.17.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.4.0_cu124.html

# Install diso and other dependencies
RUN conda run -n base pip install diso

# Verify Kaolin installation
RUN conda run -n base python -c "import kaolin; print(kaolin.__version__)"

# Create a g++ wrapper for JIT, since the include dirs are passed with -i rather than -I for some reason
RUN printf '#!/usr/bin/env bash\nexec /usr/bin/g++ -I/usr/local/cuda/include -I/usr/local/cuda/include/crt "$@"\n' > /usr/local/bin/gxx-wrapper && \
chmod +x /usr/local/bin/gxx-wrapper
ENV CXX=/usr/local/bin/gxx-wrapper

# Run setup.sh - this won't install all the things, we'll need to install some later
RUN conda run -n base ./setup.sh --basic --xformers --flash-attn --diffoctreerast --vox2seq --spconv --mipgaussian --kaolin --nvdiffrast --demo

# Now install additional Python packages
# These ones work inside the builder
RUN conda run -n base pip install plyfile utils3d flash_attn spconv-cu120 xformers
RUN conda run -n base pip install git+https://github.com/NVlabs/nvdiffrast.git

# Cleanup after builds are done
RUN apt-get remove -y ffmpeg build-essential htop git python3-onnx && \
apt-get autoremove -y && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*

RUN conda clean --all -f -y

# Deduplicate with rdfind
# This reduces the size of the image by a few hundred megs. Not great, but it's a start.
RUN rdfind -makesymlinks true /opt/conda

# Final stage
FROM pytorch/pytorch:2.4.0-cuda12.4-cudnn9-devel AS final

WORKDIR /app
COPY --from=builder /usr/local/bin/gxx-wrapper /usr/local/bin/gxx-wrapper
COPY --from=builder /opt/conda /opt/conda
COPY --from=builder /root /root
COPY --from=builder /app /app

# Reinstall any runtime tools needed
# git and build-essential are needed for post_install.sh script. vim and strace are
# useful for debugging the image size.
RUN apt-get update && \
apt-get install -y build-essential \
git \
strace \
vim && \
rm -rf /var/lib/apt/lists/*

# Add FastAPI dependencies
RUN conda run -n base pip install fastapi uvicorn python-multipart

# Add the new startup script
COPY startup.sh /app/startup.sh
RUN chmod +x /app/startup.sh

ENV PATH=/opt/conda/bin:$PATH

# This script runs the post_install steps
CMD ["/app/startup.sh"]
49 changes: 49 additions & 0 deletions Dockerfile.runpod
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
FROM runpod/base:0.6.2-cuda12.4.1

WORKDIR /app

# Install system dependencies
RUN apt-get update && \
apt-get install -y ffmpeg build-essential git python3-onnx rdfind && \
rm -rf /var/lib/apt/lists/*

# Copy the application files
COPY . .

# Initialize and update git submodules
RUN cd /app && \
git init && \
git submodule init && \
git submodule update --init --recursive && \
git submodule update --recursive && \
rm -rf .git */.git **/.git

# Create a g++ wrapper for JIT compilation
RUN printf '#!/usr/bin/env bash\nexec /usr/bin/g++ -I/usr/local/cuda/include -I/usr/local/cuda/include/crt "$@"\n' > /usr/local/bin/gxx-wrapper && \
chmod +x /usr/local/bin/gxx-wrapper
ENV CXX=/usr/local/bin/gxx-wrapper

# Install Python dependencies
RUN python3.11 -m pip install --no-cache-dir torch torchvision --index-url https://download.pytorch.org/whl/cu118
RUN python3.11 -m pip install --no-cache-dir kaolin==0.17.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.0.0_cu118.html
RUN python3.11 -m pip install --no-cache-dir diso plyfile utils3d flash_attn xformers
RUN python3.11 -m pip install --no-cache-dir git+https://github.com/NVlabs/nvdiffrast.git

# Run setup script with necessary components
RUN ./setup.sh --basic --xformers --flash-attn --diffoctreerast --vox2seq --spconv --mipgaussian --kaolin --nvdiffrast

# Install RunPod
RUN python3.11 -m pip install --no-cache-dir runpod

# Cleanup unnecessary files
RUN apt-get remove -y ffmpeg git python3-onnx && \
apt-get autoremove -y && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*

# Copy and setup startup script
COPY startup.runpod.sh /app/startup.sh
RUN chmod +x /app/startup.sh

# Use startup script as entrypoint
ENTRYPOINT ["/app/startup.runpod.sh"]
182 changes: 182 additions & 0 deletions headless_app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
import os
from typing import *
import torch
import numpy as np
import imageio
import uuid
import time
from easydict import EasyDict as edict
from PIL import Image
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import FileResponse
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import json
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()

# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/workspace/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)

def cleanup_old_files(directory: str, max_age_hours: int = 24):
"""Clean up files older than max_age_hours"""
current_time = time.time()
for filename in os.listdir(directory):
filepath = os.path.join(directory, filename)
if os.path.isfile(filepath):
if (current_time - os.path.getmtime(filepath)) > (max_age_hours * 3600):
try:
os.remove(filepath)
except OSError:
pass

@app.on_event("startup")
async def startup_event():
"""Run cleanup on startup"""
cleanup_old_files(TMP_DIR)

# Initialize pipeline globally
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()

def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
trial_id = str(uuid.uuid4())
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image

def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy().tolist(),
'_features_dc': gs._features_dc.cpu().numpy().tolist(),
'_scaling': gs._scaling.cpu().numpy().tolist(),
'_rotation': gs._rotation.cpu().numpy().tolist(),
'_opacity': gs._opacity.cpu().numpy().tolist(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy().tolist(),
'faces': mesh.faces.cpu().numpy().tolist(),
},
'trial_id': trial_id,
}

@app.post("/process-image")
async def process_image(
file: UploadFile = File(...),
seed: int = 0,
randomize_seed: bool = True,
ss_guidance_strength: float = 7.5,
ss_sampling_steps: int = 12,
slat_guidance_strength: float = 3.0,
slat_sampling_steps: int = 12
):
# Read and process the uploaded image
image = Image.open(file.file)
trial_id, processed_image = preprocess_image(image)

# Generate 3D model
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)

outputs = pipeline.run(
processed_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)

# Generate preview video
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = f"{TMP_DIR}/{trial_id}_preview.mp4"
imageio.mimsave(video_path, video, fps=15)

# Pack state and return results
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)

# Save state file
with open(f"{TMP_DIR}/{trial_id}_state.json", 'w') as f:
json.dump(state, f)

return {
"trial_id": trial_id,
"state": state,
"preview_video": f"/preview/{trial_id}"
}

@app.get("/preview/{trial_id}")
async def get_preview(trial_id: str):
video_path = f"{TMP_DIR}/{trial_id}_preview.mp4"
return FileResponse(video_path)

@app.post("/extract-glb/{trial_id}")
async def extract_glb(
trial_id: str,
mesh_simplify: float = 0.95,
texture_size: int = 1024
):
# Load the state file
state_path = f"{TMP_DIR}/{trial_id}_state.json"
if not os.path.exists(state_path):
return {"error": "Trial ID not found"}

# Add this line to load the state
with open(state_path, 'r') as f:
state = json.load(f)

# Generate GLB
glb_path = f"{TMP_DIR}/{trial_id}.glb"
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')

mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)

glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb.export(glb_path)

return FileResponse(glb_path, filename=f"{trial_id}.glb")

@app.get("/health")
async def health_check():
return {"status": "ok"}

if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
Loading