Skip to content

Flexible and user-friendly parameter and configuration management library.

License

Notifications You must be signed in to change notification settings

mduszyk/paramflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

paramflow

paramflow is a flexible and user-friendly parameter and configuration management library designed for machine learning workflows and applications requiring profiles and layered parameters. It enables seamless merging of parameters from multiple sources, auto-generates a command-line argument parser, and allows for easy parameter overrides.

Features

  • Layered configuration: Merge parameters from files, environment variables, and command-line arguments.
  • Immutable dictionary: Provides a read-only dictionary with attribute-style access.
  • Profile support: Manage multiple sets of parameters with profile-based layering.
  • Layered meta-parameters: paramflow configures itself using a layered approach.
  • Automatic type conversion: Converts types during merging based on target parameter types.
  • Command-line argument parsing: Automatically generates an argparse parser from parameter definitions.
  • Nested Configuration: Allows for nested configuration and merging.

Installation

pip install paramflow

Install with .env support:

pip install "paramflow[dotenv]"

Basic Usage

Example Configuration File (params.toml)

[default]
learning_rate = 0.001
batch_size = 64

Loading Parameters in Python (app.py)

import paramflow as pf

params = pf.load('params.toml')
print(params.learning_rate)  # 0.001

Generating Command-line Help

Running the script with --help displays both meta-parameters and parameters:

python app.py --help

Meta-Parameter Layering

Meta-parameters control how paramflow.load reads its own configuration. Layering order:

  1. paramflow.load arguments
  2. Environment variables (default prefix: P_)
  3. Command-line arguments (argparse)

Activating Profiles

Via command-line:

python print_params.py --profile dqn-adam

Via environment variable:

P_PROFILE=dqn-adam python print_params.py

Parameter Layering

Parameters are merged from multiple sources in the following order:

  1. Configuration files (.toml, .yaml, .ini, .json, .env)
  2. Environment variables (default prefix: P_)
  3. Command-line arguments (argparse)

Customizing Layering Order

You can specify the order explicitly (env and args are reserved names):

params = pf.load('params.toml', 'env', '.env', 'args')

Overriding Parameters

Override parameters via command-line arguments:

python print_params.py --profile dqn-adam --learning_rate 0.0002

Managing ML Hyperparameter Profiles

Example Configuration (params.toml)

[default]
learning_rate = 0.00025
batch_size = 32
optimizer_class = 'torch.optim.RMSprop'
optimizer_kwargs = { momentum = 0.95 }
random_seed = 13

[adam]
learning_rate = 1e-4
optimizer_class = 'torch.optim.Adam'
optimizer_kwargs = {}

Activating a Profile

python app.py --profile adam

This overrides:

  • learning_rate1e-4
  • optimizer_classtorch.optim.Adam
  • optimizer_kwargs{}

Managing Development Stages

Profiles can be used to manage configurations for different environments.

Example Configuration (params.toml)

[default]
debug = true
database_url = "mysql://localhost:3306/myapp"

[dev]
database_url = "mysql://dev:3306/myapp"

[prod]
debug = false
database_url = "mysql://prod:3306/myapp"

Activating a Profile

export P_PROFILE=dev
python app.py