FEAST | From features to slice: parameter-cloud modeling of spatial transcriptomics for simulation and 3D interpolatory augmentation
FEAST (Feature-space-based modeling of Spatial Transcriptomics) is a comprehensive computational framework for simulating and interpolating spatial transcriptomics (ST) data. By modeling gene expression through a "parameter cloud" - a latent manifold capturing mean, variance, and sparsity - FEAST generates high-fidelity synthetic ST slices with controllable biological and technical variations. This work has been submitted to top conference in computational biology RECOMB 2026, and will release preprint soon.
- High-Fidelity Simulation: Generate realistic ST data that preserves gene-level statistics, spatial patterns, and biological heterogeneity
- Controllable Alterations: Systematically modify gene expression (mean, variance, sparsity) for robust benchmarking
- Multiple ST Technologies: Support for Visium, MERFISH, Stereo-seq, Slide-seq, Xenium, and OpenST
- Alignment Benchmarks: Create paired datasets with controlled geometric transformations (rotation, warping) for testing alignment algorithms
- Deconvolution Ground Truth: Generate multi-resolution data with known cell-type compositions
- 3D Interpolation: Reconstruct missing tissue slices using optimal transport in parameter space
pip install FEAST-pygit clone https://github.com/maiziezhoulab/FEAST
cd FEAST
pip install -e .- Python >= 3.8
- scanpy
- anndata
- numpy
- scipy
- pandas
- scikit-learn
- pyvinecopulib
- POT (Python Optimal Transport)
- tps (Thin Plate Spline)
from FEAST import simulator
import scanpy as sc
# Load your reference data
adata = sc.read_h5ad("your_spatial_data.h5ad")
# Simple simulation with default parameters
simulated_adata = simulator.simulate_single_slice(
adata=adata,
sigma=1.0, # Spatial smoothness parameter
verbose=True
)
# Simulation with expression alteration
from FEAST.modeling.marginal_alteration import AlterationConfig
alteration_config = AlterationConfig.mean_only(fold_change=2.0)
altered_adata = simulator.simulate_single_slice(
adata=adata,
alteration_config=alteration_config,
sigma=1.0
)from FEAST.alignment.alignment_simulator import simulate_alignment_rotation
# Generate paired datasets with rotation for alignment benchmarking
original, rotated = simulate_alignment_rotation(
adata=adata,
rotation_angle=30.0, # degrees
data_type='imaging', # or 'sequencing'
sigma=0 # Perfect pattern preservation
)from FEAST.deconvolution.generate_deconvolution import create_deconvolution_benchmark_data
# Generate multi-resolution data with known cell-type compositions
deconv_adata = create_deconvolution_benchmark_data(
adata=single_cell_adata,
downsampling_factor=0.25,
grid_type='hexagonal',
cell_type_key='cell_type'
)from FEAST.interpolation.interpolation_pipeline import interpolate_slices
# Interpolate missing slices between consecutive sections
interpolated_slices = interpolate_slices(
adata_list=[slice_k, slice_k_plus_1],
n_interpolate=3, # Number of intermediate slices
alpha=0.01,
verbose=True
)Try FEAST with notebook! Comprehensive Jupyter notebooks are provided in the repository:
-
example_single_sim.ipynb: Basic single-slice simulation for both sequencing-based and imaging-based ST data
-
example_interpolation.ipynb: Interpolation augumentation for MERFISH slices
FEAST/
├── FEAST_core/ # Core simulation engine
│ ├── simulator.py # Main simulation logic (G-SRBA algorithm)
│ ├── parameter_cloud.py # Parameter cloud modeling
│ └── APIs.py # Unified FEAST API
├── alignment/ # Alignment simulation
│ ├── alignment_simulator.py
│ └── spatial_align_alter.py # Rotation & warping transformations
├── deconvolution/ # Deconvolution simulation
│ ├── deconvolution_simulator.py
│ └── generate_deconvolution.py
├── interpolation/ # 3D interpolation
│ ├── interpolation_pipeline.py
│ ├── parameter_interpolation.py
│ └── coordinate_generation.py
└── modeling/ # Statistical models
├── StudentT_mixture_model.py
├── Beta_mixture_model.py
└── marginal_alteration.py
The reproduction/ folder contains scripts to reproduce all benchmarking results from the paper. Each subdirectory corresponds to a specific analysis:
reproduction/
├── 1_Simulator_benchmark/ # Figure 2: Simulation fidelity evaluation
├── 2_Clustering_simulation/ # Figure 3: Clustering robustness testing
├── 3_Alignment_simulation/ # Figure 4: Alignment algorithm benchmarking
├── 4_Deconvolution_simulation/# Supp Fig: Deconvolution ground truth generation
└── 5_Interpolation_simulation/# Figure 5: 3D slice interpolation evaluation
All scripts expect datasets in a data/ directory with the following naming convention:
data/
├── DLPFC_{sample_id}.h5ad # Human DLPFC sections
├── MERFISH_{slice_id}.h5ad # Mouse brain MERFISH slices
├── OpenST_{slice_id}.h5ad # Lymph node OpenST slices
├── Stereoseq_{sample_id}.h5ad # Mouse embryo Stereo-seq slices
├── Slideseq_{sample_id}.h5ad # Slide-seqV2 slices
└── Xenium_{sample_id}.h5ad # Xenium tissue slices
| Dataset | Technology | Source | Usage | Files |
|---|---|---|---|---|
| DLPFC | 10X Visium | spatialLIBD | Simulation, Clustering, Alignment | DLPFC_151670.h5adDLPFC_151676.h5adDLPFC_151675.h5ad |
| MERFISH | MERFISH | Allen Brain Atlas | Simulation, Deconvolution, Interpolation | MERFISH_006.h5adMERFISH_007.h5adMERFISH_005-009.h5ad (5 files) |
| OpenST | OpenST | GEO: GSE251926 | Simulation | OpenST_005.h5adOpenST_006.h5ad |
| Stereo-seq | Stereo-seq | MOSTA | Simulation | Stereoseq_E14_5_E2S2.h5ad |
| Slide-seq | Slide-seqV2 | SODB | Simulation | Slideseq_001.h5ad |
| Xenium | Xenium | 10X Genomics | Simulation | Xenium_LymphNode.h5ad |
Note: FEAST is actively maintained. If you have any question, please let me know!