Skip to content
/ BCQ Public
forked from sfujim/BCQ

Author's PyTorch implementation of BCQ for continuous and discrete actions

License

Notifications You must be signed in to change notification settings

mail-ecnu/BCQ

This branch is 1 commit behind sfujim/BCQ:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

9690927 · Oct 12, 2020

History

15 Commits
Jul 7, 2020
Jul 7, 2020
Jan 28, 2020
Oct 12, 2020

Repository files navigation

Batch-Constrained Deep Q-Learning (BCQ)

Batch-Constrained deep Q-learning (BCQ) is the first batch deep reinforcement learning, an algorithm which aims to learn offline without interactions with the environment.

BCQ was first introduced in our ICML 2019 paper which focused on continuous action domains. A discrete-action version of BCQ was introduced in a followup Deep RL workshop NeurIPS 2019 paper. Code for each of these algorithms can be found under their corresponding folder.

Bibtex

@inproceedings{fujimoto2019off,
  title={Off-Policy Deep Reinforcement Learning without Exploration},
  author={Fujimoto, Scott and Meger, David and Precup, Doina},
  booktitle={International Conference on Machine Learning},
  pages={2052--2062},
  year={2019}
}
@article{fujimoto2019benchmarking,
  title={Benchmarking Batch Deep Reinforcement Learning Algorithms},
  author={Fujimoto, Scott and Conti, Edoardo and Ghavamzadeh, Mohammad and Pineau, Joelle},
  journal={arXiv preprint arXiv:1910.01708},
  year={2019}
}

About

Author's PyTorch implementation of BCQ for continuous and discrete actions

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%