-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Update asset list in main README.md Resolves: #49 Closes: machine-learning-exchange/mlx#201 Closes: machine-learning-exchange/mlx#218 Signed-off-by: Christian Kadner <[email protected]> * Update asset list in dataset-samples/README.md Signed-off-by: Christian Kadner <[email protected]> * Update asset list in notebook-samples/README.md Signed-off-by: Christian Kadner <[email protected]> * Update asset list in pipeline-samples/README.md Signed-off-by: Christian Kadner <[email protected]> * Update asset list in model-samples/README.md Signed-off-by: Christian Kadner <[email protected]>
- Loading branch information
Showing
5 changed files
with
82 additions
and
57 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,47 +1,60 @@ | ||
# MLX Katalog | ||
|
||
MLX Katalog is a project to hold the default content to bootstrap Machine Learning Exchange. | ||
MLX _Katalog_ is a project to hold the default content to bootstrap the _Machine Learning Exchange_. | ||
|
||
# List of Default Katalog Assets | ||
# List of Default Catalog Assets | ||
|
||
## Pipelines | ||
* [Trusted AI Pipeline with AI Fairness 360 and Adversarial Robustness 360 components](https://github.com/kubeflow/kfp-tekton/tree/master/samples/trusted-ai) | ||
* [Trusted AI Pipeline with AI Fairness 360 and Adversarial Robustness 360 Components](https://github.com/kubeflow/kfp-tekton/tree/master/samples/trusted-ai) | ||
* [Training and Serving Models with Watson Machine Learning](https://github.com/kubeflow/kfp-tekton/tree/master/samples/watson-train-serve#training-and-serving-models-with-watson-machine-learning) | ||
* [Lightweight python components example](https://github.com/kubeflow/kfp-tekton/tree/master/samples/lightweight-component) | ||
* [The flip-coin pipeline](https://github.com/kubeflow/kfp-tekton/tree/master/samples/flip-coin) | ||
* [Hyperparameter tuning using Katib](https://github.com/kubeflow/kfp-tekton/tree/master/samples/katib) | ||
* [Nested pipeline example](https://github.com/kubeflow/kfp-tekton/tree/master/samples/nested-pipeline) | ||
* [Pipeline with Nested loops](https://github.com/kubeflow/kfp-tekton/tree/master/samples/nested-loops) | ||
* [Lightweight Python Component Example](https://github.com/kubeflow/kfp-tekton/tree/master/samples/lightweight-component) | ||
* [The Flip-Coin Pipeline](https://github.com/kubeflow/kfp-tekton/tree/master/samples/flip-coin) | ||
* [Hyperparameter Tuning using Katib](https://github.com/kubeflow/kfp-tekton/tree/master/samples/katib) | ||
* [Nested Pipeline Example](https://github.com/kubeflow/kfp-tekton/tree/master/samples/nested-pipeline) | ||
* [Pipeline with Nested Loops](https://github.com/kubeflow/kfp-tekton/tree/master/samples/nested-loops) | ||
|
||
## Pipeline Components | ||
* [Generate Dataset Metadata](component-samples/dax-to-dlf/component.yaml) | ||
* [Create Dataset Volume](component-samples/dlf/component.yaml) | ||
* [Echo Sample](component-samples/echo/component.yaml) | ||
* [Create Secret - Kubernetes Cluster](component-samples/create-secret/component.yaml) | ||
* [Create Kubernetes Secret](component-samples/create-secret/component.yaml) | ||
* [Kubernetes Model Deploy](component-samples/kube-model-deployment/component.yaml) | ||
* [Create Model Config](component-samples/model-config/component.yaml) | ||
* [Model Fairness Check](https://github.com/Trusted-AI/AIF360/blob/master/mlops/kubeflow/bias_detector_pytorch/component.yaml) | ||
* [Adversarial Robustness Evaluation](https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/utils/mlops/kubeflow/robustness_evaluation_fgsm_pytorch/component.yaml) | ||
|
||
## Models | ||
* [Human Pose Estimator](model-samples/max-human-pose-estimator.yaml) | ||
* [Image Caption Generator](model-samples/max-image-caption-generator.yaml) | ||
* [Image Resolution Enhancer](model-samples/max-image-resolution-enhancer.yaml) | ||
* [Object Detector](model-samples/max-object-detector.yaml) | ||
* [Optical Character Recognition](model-samples/max-ocr.yaml) | ||
* [Question Answering](model-samples/max-question-answering.yaml) | ||
* [Recommender System](model-samples/max-recommender.yaml) | ||
* [Text Sentiment Classifier](model-samples/max-text-sentiment-classifier.yaml) | ||
* [Toxic Comment Classifier](model-samples/max-toxic-comment-classifier.yaml) | ||
* [Weather Forecaster](model-samples/max-weather-forecaster.yaml) | ||
* [CodeNet Language Classifier](model-samples/codenet-language-classification/codenet-language-classification.yaml) | ||
* [Human Pose Estimator](model-samples/max-human-pose-estimator/max-human-pose-estimator.yaml) | ||
* [Image Caption Generator](model-samples/max-image-caption-generator/max-image-caption-generator.yaml) | ||
* [Image Resolution Enhancer](model-samples/max-image-resolution-enhancer/max-image-resolution-enhancer.yaml) | ||
* [Named Entity Tagger](model-samples/max-named-entity-tagger/max-named-entity-tagger.yaml) | ||
* [Object Detector](model-samples/max-object-detector/max-object-detector.yaml) | ||
* [Optical Character Recognition](model-samples/max-ocr/max-ocr.yaml) | ||
* [Question Answering](model-samples/max-question-answering/max-question-answering.yaml) | ||
* [Recommender System](model-samples/max-recommender/max-recommender.yaml) | ||
* [Text Sentiment Classifier](model-samples/max-text-sentiment-classifier/max-text-sentiment-classifier.yaml) | ||
* [Toxic Comment Classifier](model-samples/max-toxic-comment-classifier/max-toxic-comment-classifier.yaml) | ||
* [Weather Forecaster](model-samples/max-weather-forecaster/max-weather-forecaster.yaml) | ||
|
||
## Datasets | ||
* [Finance Proposition Bank](dataset-samples/fpb.yaml) | ||
* [Groningen Meaning Bank - Modified](dataset-samples/gmb.yaml) | ||
* [NOAA Weather Data - JFK Airport](dataset-samples/jfk.yaml) | ||
* [PubLayNet](dataset-samples/publaynet.yaml) | ||
* [PubTabNet](dataset-samples/pubtabnet.yaml) | ||
* [IBM Debater® Thematic Clustering of Sentences](dataset-samples/thematic_clustering.yaml) | ||
* [TensorFlow Speech Commands](dataset-samples/tsc.yaml) | ||
* [CodeNet](dataset-samples/codenet/codenet.yaml) | ||
* [CodeNet Language Classification](dataset-samples/codenet_langclass/codenet_langclass.yaml) | ||
* [CodeNet MLM](dataset-samples/codenet_mlm/codenet_mlm.yaml) | ||
* [Finance Proposition Bank](dataset-samples/fpb/fpb.yaml) | ||
* [Groningen Meaning Bank](dataset-samples/gmb/gmb.yaml) | ||
* [NOAA Weather Data - JFK Airport](dataset-samples/jfk/jfk.yaml) | ||
* [PubLayNet](dataset-samples/publaynet/publaynet.yaml) | ||
* [PubTabNet](dataset-samples/pubtabnet/pubtabnet.yaml) | ||
* [Thematic Clustering of Sentences](dataset-samples/thematic_clustering/thematic_clustering.yaml) | ||
* [TensorFlow Speech Commands](dataset-samples/tsc/tsc.yaml) | ||
|
||
## Notebooks | ||
* [AIF360 Bias detection example](notebook-samples/aif-bias.yaml) | ||
* [ART detector model](notebook-samples/art-detector.yaml) | ||
* [ART poisoning attack](notebook-samples/art-poison.yaml) | ||
* [jfk-airport-analysis](notebook-samples/JFK-airport.yaml) | ||
* [AIF360 Bias Detection](notebook-samples/aif-bias.yaml) | ||
* [ART Detector Model](notebook-samples/art-detector.yaml) | ||
* [ART Poisoning Attack](notebook-samples/art-poison.yaml) | ||
* [CodeNet Laguage Classification](notebook-samples/codenet-lang.yaml) | ||
* [CodeNet MLM](notebook-samples/codenet-mlm.yaml) | ||
* [JFK Airport Weather Analysis](notebook-samples/JFK-airport.yaml) | ||
* [Qiskit Quantum Machine Learning](notebook-samples/qiskit-ml.yaml) | ||
* [Qiskit Neural Network Classifier and Regressor](notebook-samples/qiskit-nncr.yaml) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters