-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4ed58bc
commit 881ea9d
Showing
10 changed files
with
2,842 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
# Yet Another Anime Upscaler | ||
|
||
YAAU is a model to upscale images, trained on Danbooru. | ||
A lot of thanks to Gwern for hosting such an incredible resource. | ||
![original](./example/Miku.png) | ||
![result](./example/Result.png) | ||
## Installation | ||
|
||
you will need poetry. `./init_env.sh` will install dependencies. | ||
if you want to train the model yourself, you will need danbooru, or at least a part of it. | ||
If you want to use a pretrained model, you can download it in the releases. | ||
|
||
``` | ||
## Usage | ||
`python ./super_res.py <source>` |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
poetry update | ||
poetry run pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "derived-ratio", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from fastai.vision.all import *\n", | ||
"from pathlib import Path\n", | ||
"import itertools\n", | ||
"import progressbar" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "charming-adapter", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"DANBOORU_PATH = Path('/home/lleonard/Documents/datasets/danbooru/0/danbooru2020/')\n", | ||
"EXTENSIONS = ['png', 'jpg']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "passing-russian", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"i = 0\n", | ||
"def file_exists(images_id):\n", | ||
" with progressbar.ProgressBar(max_value=len(images_id)) as bar:\n", | ||
" def single_image_exists(image_id):\n", | ||
" global i\n", | ||
" last_4_digit = str(image_id % 1000).zfill(4)\n", | ||
" path_to_glob = str(DANBOORU_PATH / '512px' / last_4_digit / str(image_id)) + '.'\n", | ||
" globbed = list(itertools.chain(*[glob.glob(path_to_glob + ext) for ext in EXTENSIONS]))\n", | ||
" bar.update(i)\n", | ||
" i = i + 1\n", | ||
" if len(globbed) == 0:\n", | ||
" return False\n", | ||
" return True\n", | ||
"\n", | ||
" return images_id.apply(single_image_exists)\n", | ||
" \n", | ||
" \n", | ||
"\n", | ||
"ratings = pd.read_csv('/home/lleonard/Documents/datasets/danbooru/0/danbooru2020/ratings_tags_0000.csv')\n", | ||
"print(ratings)\n", | ||
"ratings = ratings[ratings['id'] % 1000 < 50]\n", | ||
"ratings = ratings[file_exists(ratings['id'])]\n", | ||
"ratings = ratings[['id', 'rating', 'tags']]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "warming-knitting", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ratings = pd.read_csv('clean_0000.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "processed-special", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ratings.groupby('rating').count()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "attached-british", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sampled_ratings = ratings[ratings['rating'] != 's'].append(ratings[ratings['rating'] == 's'].sample(15000))\n", | ||
"sampled_ratings.groupby('rating').count()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "studied-boston", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# ratings.to_csv('clean_0000.csv', index=False)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "mediterranean-contract", | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def get_x(row):\n", | ||
" image_id = str(row['id'])\n", | ||
" mod_1000 = str(row['id'] % 1000)\n", | ||
" path_to_glob = str(DANBOORU_PATH / '512px' / mod_1000.zfill(4) / str(image_id)) + '.'\n", | ||
" return list(itertools.chain(*[glob.glob(path_to_glob + ext) for ext in EXTENSIONS]))[0]\n", | ||
" \n", | ||
"\n", | ||
"def get_y(row):\n", | ||
" return row['rating']\n", | ||
"\n", | ||
"dblock = DataBlock(blocks=(ImageBlock, CategoryBlock),\n", | ||
" item_tfms=Resize((224,224)),\n", | ||
" batch_tfms=[*aug_transforms(),Normalize()],\n", | ||
" get_x = get_x, get_y = get_y)\n", | ||
"dblock.summary(sampled_ratings)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "killing-cowboy", | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"dataloaders = dblock.dataloaders(sampled_ratings, bs=128)\n", | ||
"dataloaders.show_batch()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "floating-ranch", | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"learner = cnn_learner(dataloaders, models.vgg16_bn, metrics = accuracy).to_fp16()\n", | ||
"learner.model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "pleased-cooking", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"learner.lr_find()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "novel-campbell", | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"learner.fit_one_cycle(100, 3e-3)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "finished-orange", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"learner.unfreeze()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "genetic-citizenship", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"learner.fit_one_cycle(100, slice(3e-5, 3e-3))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "owned-crack", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"learner.save('danbooru_vgg_classifier')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "laden-breed", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"torch.cuda.empty_cache()\n", | ||
"dataloaders = dblock.dataloaders(ratings, bs=64)\n", | ||
"model = model.eval().to('cuda')\n", | ||
"data = iter(dataloaders.valid)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "white-ocean", | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import torchvision\n", | ||
"\n", | ||
"item = next(data)\n", | ||
"grid = torchvision.utils.make_grid(item[0])\n", | ||
"show_image(grid)\n", | ||
"preds = model(item[0])\n", | ||
"print(preds[preds[:, 0].argmax(), :])\n", | ||
"show_image(item[0][preds[:, 0].argmax()])\n", | ||
"del preds\n", | ||
"del item" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "vital-milton", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import fastai\n", | ||
"fastai.__version__, torch.__version__" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.7" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.