Skip to content

使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM, SARIMA and other algorithms are used for regression prediction of time series. In addition, a variety of combination methods are used to forecast the output of the above algorithms.

Notifications You must be signed in to change notification settings

louisyunchang/regression-prediction-algorithms

 
 

Repository files navigation

regression-prediction-algorithms

使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM, SARIMA and other algorithms are used for regression prediction of time series. In addition, a variety of combination methods are used to forecast the output of the above algorithms.

About

使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM, SARIMA and other algorithms are used for regression prediction of time series. In addition, a variety of combination methods are used to forecast the output of the above algorithms.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%