-
Notifications
You must be signed in to change notification settings - Fork 557
Initial commit does not build #4082
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from 1 commit
e0d6f02
31140fb
059c443
ca5df55
e4a50e5
d035744
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
|
@@ -1616,6 +1616,223 @@ class ConvertAtenAdaptivePoolOp : public OpConversionPattern<OpTy> { | |||||
}; | ||||||
} // namespace | ||||||
|
||||||
namespace { | ||||||
template <typename OpTy, typename PoolingOpTy, int Dim> | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Remove the other two template parameters, since they are unused. I took a short glance through and I don't have any immediate comments yet. Let's get something built so we can test correctness and iterate from there. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. You'll also need to add this pattern to |
||||||
class ConvertRoiAlignOp : public OpConversionPattern<OpTy> { | ||||||
public: | ||||||
Muzammiluddin-Syed-ECE marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
using OpConversionPattern<OpTy>::OpConversionPattern; | ||||||
LogicalResult | ||||||
matchAndRewrite(OpTy op, typename OpTy::Adaptor adaptor, | ||||||
ConversionPatternRewriter &rewriter) const override { | ||||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter))) | ||||||
return failure(); | ||||||
|
||||||
Location loc = op->getLoc(); | ||||||
const TypeConverter *typeConverter = this->getTypeConverter(); | ||||||
Value result = op.getResult(); | ||||||
|
||||||
uint64_t pooledHeight = | ||||||
cast<ConstantIntOp>(op.getPooledHeight().getDefiningOp()).getValue(); | ||||||
uint64_t pooledWidth = | ||||||
cast<ConstantIntOp>(op.getPooledWidth().getDefiningOp()).getValue(); | ||||||
uint64_t samplingRatio = | ||||||
cast<ConstantIntOp>(op.getSamplingRatio().getDefiningOp()).getValue(); | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Use |
||||||
Value pooledH = op.getPooledHeight(); | ||||||
Value pooledW = op.getPooledWidth(); | ||||||
Value spatialScaleVal = op.getSpatialScale(); | ||||||
llvm::APFloat spatialScale = | ||||||
cast<ConstantFloatOp>(op.getSpatialScale().getDefiningOp()).getValue(); | ||||||
Value rois = op.getRois(); | ||||||
Value input = op.getInput(); | ||||||
// RankedTensorType inputType = input.getType(); | ||||||
Value offset = | ||||||
rewriter.create<arith::ConstantOp>(loc, b.getF32FloatAttr(0.0)); | ||||||
Type resultType = cast<RankedTensorType>(result.getType()); | ||||||
Type resultElementType = resultType.getElementType(); | ||||||
if (!op.getAligned()) { | ||||||
offset = rewriter.create<arith::ConstantOp>(loc, b.getF32FloatAttr(0.5)); | ||||||
} | ||||||
|
||||||
Value lb = rewriter.create<arith::ConstantIndexOp>(loc, 0); | ||||||
Value ub0 = rewriter.create<tensor::DimOp>(loc, rois, 0); | ||||||
Value ub1 = rewriter.create<tensor::DimOp>(loc, input, 1); | ||||||
Value step = rewriter.create<arith::ConstantIndexOp>(loc, 1); | ||||||
SmallVector<Value> finalOutputShape = {ub0, ub1, pooledH, pooledW}; | ||||||
Value finalOutputTensor = rewriter.create<tensor::EmptyOp>( | ||||||
loc, getAsOpFoldResult(finalOutputShape), resultElementType); | ||||||
auto forLoop = rewriter.create<scf::ForOp>( | ||||||
loc, lb, ub0, step, ValueRange{}, | ||||||
[&](OpBuilder &b1, Location loc, Value iv0, ValueRange args) { | ||||||
auto forLoop = b1.create<scf::ForOp>( | ||||||
loc, lb, ub1, step, ValueRange{}, | ||||||
[&](OpBuilder &b, Location loc, Value iv1, ValueRange args) { | ||||||
// Step 1: Extract bounds for region of interest (roi) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: Use proper punctuation in comments
Suggested change
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Also in other comments in this file |
||||||
OpFoldResult zeroAttr = b.getI64IntegerAttr(0); | ||||||
OpFoldResult oneAttr = b.getI64IntegerAttr(1); | ||||||
OpFoldResult twoAttr = b.getI64IntegerAttr(2); | ||||||
OpFoldResult threeAttr = b.getI64IntegerAttr(3); | ||||||
OpFoldResult fourAttr = b.getI64IntegerAttr(4); | ||||||
OpFoldResult fiveAttr = b.getI64IntegerAttr(5); | ||||||
// SmallVector<Value> offsetVals{iv0, zeroAttr}; | ||||||
// SmallVector<OpFoldResult> sizeVals{oneAttr, fiveAttr}; | ||||||
SmallVector<OpFoldResult> strideVals{oneAttr, oneAttr, oneAttr, | ||||||
oneAttr}; | ||||||
// Value extractRoiBounds = b.create<tensor::ExtractSliceOp>( | ||||||
// loc, rois, offsetVals, sizeVals, strideVals); | ||||||
Value lowY = b.create<tensor::ExtractOp>( | ||||||
loc, rois, ValueRange{iv0, oneAttr}); | ||||||
Value lowX = b.create<tensor::ExtractOp>( | ||||||
loc, rois, ValueRange{iv0, twoAttr}); | ||||||
Value highY = b.create<tensor::ExtractOp>( | ||||||
loc, rois, ValueRange{iv0, threeAttr}); | ||||||
Value highX = b.create<tensor::ExtractOp>( | ||||||
loc, rois, ValueRange{iv0, fourAttr}); | ||||||
|
||||||
lowY = b.create<arith::MulFOp>(loc, lowY, spatialScaleVal); | ||||||
lowX = b.create<arith::MulFOp>(loc, lowX, spatialScaleVal); | ||||||
highY = b.create<arith::MulFOp>(loc, highY, spatialScaleVal); | ||||||
highX = b.create<arith::MulFOp>(loc, highX, spatialScaleVal); | ||||||
|
||||||
lowY = b.create<arith::SubFOp>(loc, lowY, offset); | ||||||
lowX = b.create<arith::SubFOp>(loc, lowX, offset); | ||||||
highY = b.create<arith::SubFOp>(loc, highY, offset); | ||||||
highX = b.create<arith::SubFOp>(loc, highX, offset); | ||||||
|
||||||
// Step 2: Extract region of interest using bounds | ||||||
Value lowY_int = b.create<math::FloorOp>(loc, lowY); | ||||||
Value lowX_int = b.create<math::FloorOp>(loc, lowX); | ||||||
Value highY_int = b.create<math::CeilOp>(loc, highY); | ||||||
Value highX_int = b.create<math::CeilOp>(loc, highX); | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. llvm doesn't use underscores in variable names, see https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly and https://mlir.llvm.org/getting_started/DeveloperGuide/#style-guide |
||||||
lowY_int = | ||||||
b.create<arith::FPToSIOp>(loc, b.getI64Type(), lowY_int); | ||||||
lowX_int = | ||||||
b.create<arith::FPToSIOp>(loc, b.getI64Type(), lowX_int); | ||||||
highY_int = | ||||||
b.create<arith::FPToSIOp>(loc, b.getI64Type(), highY_int); | ||||||
highX_int = | ||||||
b.create<arith::FPToSIOp>(loc, b.getI64Type(), highX_int); | ||||||
|
||||||
Value roiHeight = | ||||||
b.create<arith::SubIOp>(loc, highY_int, lowY_int); | ||||||
Value roiWidth = | ||||||
b.create<arith::SubIOp>(loc, highX_int, lowX_int); | ||||||
|
||||||
SmallVector<Value> roiOffsetVals{zeroAttr, iv1, lowY_int, | ||||||
lowX_int}; | ||||||
SmallVector<Value> roiSizeVals{oneAttr, oneAttr, roiHeight, | ||||||
roiWidth}; | ||||||
|
||||||
Value extractRoi = b.create<tensor::ExtractSliceOp>( | ||||||
loc, input, roiOffsetVals, roiSizeVals, strideVals); | ||||||
|
||||||
// Step 3: Perform bilinear interpolation over roi | ||||||
Value roiBinH = b.create<arith::SubOp>(loc, highY, lowY); | ||||||
Value roiBinW = b.create<arith::SubOp>(loc, highX, lowX); | ||||||
Value scaleH = b.create<arith::DivOp>(loc, roiBinH, pooledH); | ||||||
Value scaleW = b.create<arith::DivOp>(loc, roiBinW, pooledW); | ||||||
scaleH = b.create<arith::CeilOp>(loc, scaleH); | ||||||
scaleW = b.create<arith::CeilOp>(loc, scaleW); | ||||||
scaleH = b.create<arith::FPToSIOp>(loc, b.getI64Type(), scaleH); | ||||||
scaleW = b.create<arith::FPToSIOp>(loc, b.getI64Type(), scaleW); | ||||||
|
||||||
Value roiSampleHeight = | ||||||
b.create<arith::MulIOp>(loc, pooledH, scaleH); | ||||||
Value roiSampleWidth = | ||||||
b.create<arith::MulIOp>(loc, pooledW, scaleW); | ||||||
|
||||||
SmallVector<Value> outputSizeIntValues = {roiSampleHeight, | ||||||
roiSampleWidth}; | ||||||
SmallVector<Value> dims = | ||||||
getTensorSizesUntilDim(b, loc, extractRoi, 1); | ||||||
for (unsigned i = 2; i < inputRank; i++) { | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Use pre-increment:
Suggested change
See https://llvm.org/docs/CodingStandards.html#prefer-preincrement Also in other loops |
||||||
dims.push_back( | ||||||
castIntToIndex(b, loc, outputSizeIntValues[i - 2])); | ||||||
} | ||||||
SmallVector<Value> inputSizes; | ||||||
auto inputType = cast<RankedTensorType>(extractRoi.getType()); | ||||||
auto inputRank = inputType.getRank(); | ||||||
for (unsigned i = 2; i < inputRank; i++) { | ||||||
Value inputSize = getDimOp(b, loc, extractRoi, i); | ||||||
inputSizes.push_back(b.create<arith::IndexCastOp>( | ||||||
loc, b.getIntegerType(64), roiSizeVals[i])); | ||||||
} | ||||||
Value outTensor = b.create<tensor::EmptyOp>( | ||||||
loc, getAsOpFoldResult(dims), inputType.getElementType()); | ||||||
AffineMap idMap = b.getMultiDimIdentityMap(inputRank); | ||||||
SmallVector<utils::IteratorType> iteratorTypes( | ||||||
inputRank, utils::IteratorType::parallel); | ||||||
Value bilinearInterpolatedRoi = | ||||||
b.create<linalg::GenericOp>( | ||||||
loc, outTensor.getType(), ValueRange{}, outTensor, | ||||||
/*indexingMaps=*/idMap, | ||||||
/*iteratorTypes=*/iteratorTypes, | ||||||
[&](OpBuilder &b, Location loc, ValueRange args) { | ||||||
Value retVal = bilinearInterpolate( | ||||||
b, op, loc, outputSizeIntValues, extractRoi, | ||||||
inputSizes, ValueRange{}, "bilinear"); | ||||||
b.create<linalg::YieldOp>(loc, retVal); | ||||||
}) | ||||||
.getResult(0); | ||||||
|
||||||
// Step 4: Sum pool over interpolated values | ||||||
Value sumPool, paddedInput; | ||||||
SmallVector<Value> kernelSizeIntValues = {oneAttr, oneAttr, | ||||||
scaleH, scaleW}; | ||||||
SmallVector<Value, 2> strideInts = {scaleH, scaleW}; | ||||||
SmallVector<Value, 2> paddingInts = {zeroAttr, zeroAttr}; | ||||||
SmallVector<Value, 2> dilationInts(oneAttr, 2); | ||||||
SmallVector<Value, 4> outTensorShape; | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If you need two values only you can use a plain C array |
||||||
if (failed(createPoolingOp<linalg::PoolingNchwSumOp>( | ||||||
op, b, self, /*supportNonFPInput=*/true, false, | ||||||
/*dimensionality=*/2, kernelSizeIntValues, strideInts, | ||||||
paddingInts, dilationInts, | ||||||
b.getZeroAttr(resultElementType), outTensorShape, | ||||||
paddedInput, sumPool))) | ||||||
return b.notifyMatchFailure(op, "unable to compute sumpool"); | ||||||
|
||||||
// Step 5: elementwise division by number of sampling points | ||||||
// to compute avg pool | ||||||
Value outputTensor = b.create<tensor::EmptyOp>( | ||||||
loc, getAsOpFoldResult(outTensorShape), resultElementType); | ||||||
Value divisor = b.create<arith::MulIOp>(loc, scaleH, scaleW); | ||||||
Value avgPool = | ||||||
b.create<linalg::GenericOp>( | ||||||
loc, outputTensor.getType(), sumPool, outputTensor, | ||||||
/*indexingMaps=*/indexingMapsAvg, | ||||||
/*iteratorTypes=*/iteratorTypesAvg, | ||||||
[&](OpBuilder &b, Location loc, ValueRange args) { | ||||||
Value avg; | ||||||
if (isa<mlir::IntegerType>(resultElementType)) | ||||||
avg = b.create<arith::DivSIOp>(loc, args[0], | ||||||
divisor); | ||||||
else if (isa<mlir::FloatType>(resultElementType)) | ||||||
avg = | ||||||
b.create<arith::DivFOp>(loc, args[0], divisor); | ||||||
b.create<linalg::YieldOp>(loc, avg); | ||||||
}) | ||||||
.getResult(0); | ||||||
|
||||||
SmallVector<OpFoldResult> finalStrides(inputRank, oneAttr); | ||||||
SmallVector<OpFoldResult> finalOffsets = { | ||||||
getAsOpFoldResult(iv0), getAsOpFoldResult(iv1), zeroAttr, | ||||||
zeroAttr}; | ||||||
SmallVector<OpFoldResult> finalSizes = { | ||||||
oneAttr, oneAttr, getAsOpFoldResult(pooledH), | ||||||
getAsOpFoldResult(pooledW)}; | ||||||
SmallVector<OpFoldResult> diagStrides(inputRank, oneAttr); | ||||||
finalOutputTensor = b.create<tensor::InsertSliceOp>( | ||||||
loc, finalOutputTensor, avgPool, finalOffsets, finalSizes, | ||||||
finalStrides); | ||||||
}); | ||||||
}); | ||||||
|
||||||
Type resultType = typeConverter->convertType(op.getType()); | ||||||
b.replaceOp(op, finalOutputTensor); | ||||||
return success(); | ||||||
} | ||||||
}; | ||||||
} // namespace | ||||||
|
||||||
void mlir::torch::torch_to_linalg::populatePoolingPatternsAndLegality( | ||||||
TypeConverter &typeConverter, RewritePatternSet &patterns, | ||||||
ConversionTarget &target) { | ||||||
|
Uh oh!
There was an error while loading. Please reload this page.