Skip to content

Commit

Permalink
add files
Browse files Browse the repository at this point in the history
  • Loading branch information
刘雪峰 committed Sep 5, 2024
1 parent 97fdddb commit 82162f8
Show file tree
Hide file tree
Showing 28 changed files with 3,213 additions and 0 deletions.
25 changes: 25 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
MIT License

Copyright (c) 2024 lldacing

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

---

The code and models of BiRefNet are released under the MIT License.
50 changes: 50 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
## Install

- Manual
```shell
cd custom_nodes
git clone https://github.com/lldacing/ComfyUI_BiRefNet_ll.git
cd custom_nodes/ComfyUI_BiRefNet_ll
pip install -r requirements.txt
# restart ComfyUI
```


## Models

The available models are:

- General: A pre-trained model for general use cases.
- General-Lite: A light pre-trained model for general use cases.
- Portrait: A pre-trained model for human portraits.
- DIS: A pre-trained model for dichotomous image segmentation (DIS).
- HRSOD: A pre-trained model for high-resolution salient object detection (HRSOD).
- COD: A pre-trained model for concealed object detection (COD).
- DIS-TR_TEs: A pre-trained model with massive dataset.

Model files go here (automatically downloaded if the folder is not present during first run): `models/BiRefNet`.

If necessary, they can be downloaded from:
- [General](https://huggingface.co/ZhengPeng7/BiRefNet/resolve/main/model.safetensors)`model.safetensors` must be renamed `General.safetensors`
- [General-Lite](https://huggingface.co/ZhengPeng7/BiRefNet_T/resolve/main/model.safetensors)`model.safetensors` must be renamed `General-Lite.safetensors`
- [Portrait](https://huggingface.co/ZhengPeng7/BiRefNet-portrait/resolve/main/model.safetensors)`model.safetensors` must be renamed `Portrait.safetensors`
- [DIS](https://huggingface.co/ZhengPeng7/BiRefNet-DIS5K/resolve/main/model.safetensors)`model.safetensors` must be renamed `DIS.safetensors`
- [HRSOD](https://huggingface.co/ZhengPeng7/BiRefNet-HRSOD/resolve/main/model.safetensors)`model.safetensors` must be renamed `HRSOD.safetensors`
- [COD](https://huggingface.co/ZhengPeng7/BiRefNet-COD/resolve/main/model.safetensors)`model.safetensors` must be renamed `COD.safetensors`
- [DIS-TR_TEs](https://huggingface.co/ZhengPeng7/BiRefNet-DIS5K-TR_TEs/resolve/main/model.safetensors)`model.safetensors` must be renamed `DIS-TR_TEs.safetensors`


## Nodes
- AutoDownloadBiRefNetModel
- Automatically download the model into models/BiRefNet
- LoadRembgByBiRefNetModel
- Can select model from "models/BiRefNet" or the path of "birefnet" configured in the extra YAML file
- You can download model from [BiRefNet Releases](https://github.com/ZhengPeng7/BiRefNet/releases)
- RembgByBiRefNet

## Thanks

[BiRefNet](https://github.com/zhengpeng7/birefnet)

[dimitribarbot/sd-webui-birefnet](https://github.com/dimitribarbot/sd-webui-birefnet)

13 changes: 13 additions & 0 deletions __init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
import os
import sys

# 获取当前目录的父目录的父目录
parent_dir = os.path.dirname(os.path.abspath(__file__))

# 添加父目录的父目录到系统路径
sys.path.insert(0, parent_dir)

from . import birefnetNode

NODE_CLASS_MAPPINGS = {**birefnetNode.NODE_CLASS_MAPPINGS}
NODE_DISPLAY_NAME_MAPPINGS = {**birefnetNode.NODE_DISPLAY_NAME_MAPPINGS}
Empty file added birefnet/__init__.py
Empty file.
176 changes: 176 additions & 0 deletions birefnet/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
import os
import math

CUR_DIR = os.path.dirname(__file__)

class Config():
def __init__(self, bb_index: int = 6) -> None:
# PATH settings
# Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
# if os.name == 'nt':
# self.sys_home_dir = os.environ['USERPROFILE'] # For windows system
# else:
# self.sys_home_dir = os.environ['HOME'] # For Linux system

# TASK settings
self.task = ['DIS5K', 'COD', 'HRSOD', 'General', 'Matting'][0]
self.training_set = {
'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
'COD': 'TR-COD10K+TR-CAMO',
'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
'General': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TR-HRSOD+TE-HRSOD+TR-HRS10K+TE-HRS10K+TR-UHRSD+TE-UHRSD+TR-P3M-10k+TE-P3M-500-NP+TE-P3M-500-P+TR-humans', # leave DIS-VD for evaluation.
'Matting': 'TR-P3M-10k+TE-P3M-500-NP+TR-humans+TR-Distrinctions-646',
}[self.task]
self.prompt4loc = ['dense', 'sparse'][0]

# Faster-Training settings
self.load_all = False # Turn it on/off by your case. It may consume a lot of CPU memory. And for multi-GPU (N), it would cost N times the CPU memory to load the data.
self.use_fp16 = False # It may cause nan in training.
self.compile = True and (not self.use_fp16) # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
# Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
# 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
# 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
self.precisionHigh = True

# MODEL settings
self.ms_supervision = True
self.out_ref = self.ms_supervision and True
self.dec_ipt = True
self.dec_ipt_split = True
self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
self.mul_scl_ipt = ['', 'add', 'cat'][2]
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
self.dec_blk = ['BasicDecBlk', 'ResBlk'][0]

# TRAINING settings
self.batch_size = 4
self.finetune_last_epochs = [
('IoU', 0),
{
'DIS5K': ('IoU', -30),
'COD': ('IoU', -20),
'HRSOD': ('IoU', -20),
'General': ('MAE', -10),
'Matting': ('MAE', -10),
}[self.task]
][1] # choose 0 to skip
self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
self.size = 1024
self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader

# Backbone settings
self.bb = [
'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
'swin_v1_t', 'swin_v1_s', # 3, 4
'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
][bb_index]
self.lateral_channels_in_collection = {
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
}[self.bb]
if self.mul_scl_ipt == 'cat':
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []

# MODEL settings - inactive
self.lat_blk = ['BasicLatBlk'][0]
self.dec_channels_inter = ['fixed', 'adap'][0]
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
self.progressive_ref = self.refine and True
self.ender = self.progressive_ref and False
self.scale = self.progressive_ref and 2
self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
self.refine_iteration = 1
self.freeze_bb = False
self.model = [
'BiRefNet',
][0]

# TRAINING settings - inactive
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
self.optimizer = ['Adam', 'AdamW'][1]
self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
self.lr_decay_rate = 0.5
# Loss
if self.task not in ['Matting']:
self.lambdas_pix_last = {
# not 0 means opening this loss
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
'bce': 30 * 1, # high performance
'iou': 0.5 * 1, # 0 / 255
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
'mae': 30 * 0,
'mse': 30 * 0, # can smooth the saliency map
'triplet': 3 * 0,
'reg': 100 * 0,
'ssim': 10 * 1, # help contours,
'cnt': 5 * 0, # help contours
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
}
else:
self.lambdas_pix_last = {
# not 0 means opening this loss
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
'bce': 30 * 0, # high performance
'iou': 0.5 * 0, # 0 / 255
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
'mae': 100 * 1,
'mse': 30 * 0, # can smooth the saliency map
'triplet': 3 * 0,
'reg': 100 * 0,
'ssim': 10 * 1, # help contours,
'cnt': 5 * 0, # help contours
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
}
self.lambdas_cls = {
'ce': 5.0
}
# Adv
self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)

# PATH settings - inactive
# self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
# self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
# self.weights = {
# 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
# 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
# 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
# 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
# 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
# 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
# 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
# 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
# }
self.weights = {}

# Callbacks - inactive
self.verbose_eval = True
self.only_S_MAE = False
self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs

# others
self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')

self.batch_size_valid = 1
self.rand_seed = 7
# run_sh_file = [f for f in os.listdir(CUR_DIR) if 'train.sh' == f] + [os.path.join(CUR_DIR, '..', f) for f in os.listdir('..') if 'train.sh' == f]
# if run_sh_file:
# with open(run_sh_file[0], 'r') as f:
# lines = f.readlines()
# self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])

def print_task(self) -> None:
# Return task for choosing settings in shell scripts.
print(self.task)

# if __name__ == '__main__':
# config = Config()
# config.print_task()

Loading

0 comments on commit 82162f8

Please sign in to comment.