Learning Generalized Physical Representation from a Few Examples
NeuralForceField/
│
├── data/
│ └──iphyre/game_seq_data/
│ ├── activated_pendulum/
│ ├── angle/
│ ├── ...
│ └── support_hole/
│ └── nbody/
│ ├── train.npy
│ ├── within.npy
│ └── cross.npy
│
├── checkpoints/
│
├── iphyre/
│ ├── configs/ # Configuration files
│ ├── models/ # Model dir containing NFF, IN, SlotFormer
│ ├── utils/ # Useful tools such as dataloader
│ ├── planning.py # Planning script
│ ├── README.md # An instruction for use
│ ├── test.py # Evaluation functions
│ └── train.py # Training functions
│
├── iphyre/
│ ├── configs/ # Configuration files
│ ├── models/ # Model dir containing NFF, IN, SlotFormer
│ ├── utils/ # Useful tools such as dataloader
│ ├── generate_data.py # Data generation functions
│ ├── planning.py # Planning script
│ ├── README.md # An instruction for use
│ ├── test.py # Evaluation functions
│ └── train.py # Training functions
Make sure you have installed torch, torchdiffeq, iphyre, and rebound.
Go to the specific task directory to train and test the models. The instructions of running commands are provided for each task (README_iphyre and README_nbody). Download data here and checkpoints here.
cd ./iphyre
or
cd ./nbody