-
Notifications
You must be signed in to change notification settings - Fork 180
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Yi Chen <[email protected]>
- Loading branch information
Showing
3 changed files
with
313 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# | ||
# Copyright 2024 The Kubeflow Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
ARG PYTORCH_IMAGE=pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime | ||
|
||
FROM ${PYTORCH_IMAGE} | ||
|
||
COPY requirements.txt . | ||
|
||
RUN set -eux && \ | ||
pip install -r requirements.txt && \ | ||
rm requirements.txt |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,287 @@ | ||
# | ||
# Copyright 2024 The Kubeflow Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import argparse | ||
import os | ||
|
||
import torch | ||
import torch.distributed as dist | ||
import torch.nn.functional as F | ||
from torch import nn, optim | ||
from torch.optim.lr_scheduler import StepLR | ||
from torch.utils.tensorboard import SummaryWriter | ||
from torchvision import datasets, transforms | ||
|
||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 32, 3, 1) | ||
self.conv2 = nn.Conv2d(32, 64, 3, 1) | ||
self.dropout1 = nn.Dropout(0.25) | ||
self.dropout2 = nn.Dropout(0.5) | ||
self.fc1 = nn.Linear(9216, 128) | ||
self.fc2 = nn.Linear(128, 10) | ||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = F.relu(x) | ||
x = self.conv2(x) | ||
x = F.relu(x) | ||
x = F.max_pool2d(x, 2) | ||
x = self.dropout1(x) | ||
x = torch.flatten(x, 1) | ||
x = self.fc1(x) | ||
x = F.relu(x) | ||
x = self.dropout2(x) | ||
x = self.fc2(x) | ||
output = F.log_softmax(x, dim=1) | ||
return output | ||
|
||
|
||
def train(args, model, device, train_loader, optimizer, epoch, writer): | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
data, target = data.to(device), target.to(device) | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.nll_loss(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
if batch_idx % args.log_interval == 0: | ||
print( | ||
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( | ||
epoch, | ||
batch_idx * len(data), | ||
len(train_loader.dataset), | ||
100.0 * batch_idx / len(train_loader), | ||
loss.item(), | ||
) | ||
) | ||
niter = epoch * len(train_loader) + batch_idx | ||
writer.add_scalar('loss', loss.item(), niter) | ||
if args.dry_run: | ||
break | ||
|
||
|
||
def test(model, device, test_loader, epoch, writer): | ||
model.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
with torch.no_grad(): | ||
for data, target in test_loader: | ||
data, target = data.to(device), target.to(device) | ||
output = model(data) | ||
# sum up batch loss | ||
test_loss += F.nll_loss(output, target, reduction="sum").item() | ||
# get the index of the max log-probability | ||
pred = output.argmax(dim=1, keepdim=True) | ||
correct += pred.eq(target.view_as(pred)).sum().item() | ||
|
||
test_loss /= len(test_loader.dataset) | ||
accuracy = float(correct) / len(test_loader.dataset) | ||
print( | ||
"\nAccuracy: {}/{} ({:.2f}%)\n".format( | ||
correct, | ||
len(test_loader.dataset), | ||
accuracy * 100.0, | ||
) | ||
) | ||
writer.add_scalar('accuracy', accuracy, epoch) | ||
|
||
|
||
def print_env(): | ||
info = { | ||
"PID": os.getpid(), | ||
"MASTER_ADDR": os.environ["MASTER_ADDR"], | ||
"MASTER_PORT": os.environ["MASTER_PORT"], | ||
"LOCAL_RANK": int(os.environ["LOCAL_RANK"]), | ||
"RANK": int(os.environ["RANK"]), | ||
"GROUP_RANK": int(os.environ["GROUP_RANK"]), | ||
"ROLE_RANK": int(os.environ["ROLE_RANK"]), | ||
"LOCAL_WORLD_SIZE": int(os.environ["LOCAL_WORLD_SIZE"]), | ||
"WORLD_SIZE": int(os.environ["WORLD_SIZE"]), | ||
"ROLE_WORLD_SIZE": int(os.environ["ROLE_WORLD_SIZE"]), | ||
} | ||
print(info) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="PyTorch MNIST Example") | ||
parser.add_argument( | ||
"--data", | ||
default="../data", | ||
metavar="D", | ||
help="directory where summary logs are stored", | ||
) | ||
parser.add_argument( | ||
"--batch-size", | ||
type=int, | ||
default=64, | ||
metavar="N", | ||
help="input batch size for training (default: 64)", | ||
) | ||
parser.add_argument( | ||
"--test-batch-size", | ||
type=int, | ||
default=1000, | ||
metavar="N", | ||
help="input batch size for testing (default: 1000)", | ||
) | ||
parser.add_argument( | ||
"--epochs", | ||
type=int, | ||
default=14, | ||
metavar="N", | ||
help="number of epochs to train (default: 14)", | ||
) | ||
parser.add_argument( | ||
"--lr", | ||
type=float, | ||
default=1.0, | ||
metavar="LR", | ||
help="learning rate (default: 1.0)", | ||
) | ||
parser.add_argument( | ||
"--gamma", | ||
type=float, | ||
default=0.7, | ||
metavar="M", | ||
help="Learning rate step gamma (default: 0.7)", | ||
) | ||
parser.add_argument( | ||
"--no-cuda", | ||
action="store_true", | ||
default=False, | ||
help="disables CUDA training", | ||
) | ||
parser.add_argument( | ||
"--dry-run", | ||
action="store_true", | ||
default=False, | ||
help="quickly check a single pass", | ||
) | ||
parser.add_argument( | ||
"--seed", | ||
type=int, | ||
default=1, | ||
metavar="S", | ||
help="random seed (default: 1)" | ||
) | ||
parser.add_argument( | ||
"--log-interval", | ||
type=int, | ||
default=10, | ||
metavar="N", | ||
help="how many batches to wait before logging training status", | ||
) | ||
parser.add_argument( | ||
"--save-model", | ||
action="store_true", | ||
default=False, | ||
help="For Saving the current Model", | ||
) | ||
parser.add_argument( | ||
'--dir', | ||
default=os.path.join(os.path.dirname(__file__), 'logs'), | ||
metavar='L', | ||
help='directory where summary logs are stored' | ||
) | ||
if dist.is_available(): | ||
parser.add_argument( | ||
"--backend", | ||
type=str, | ||
default=dist.Backend.NCCL, | ||
choices=[ | ||
dist.Backend.NCCL, | ||
dist.Backend.GLOO, | ||
dist.Backend.MPI | ||
], | ||
help="Distributed backend", | ||
) | ||
args = parser.parse_args() | ||
print_env() | ||
|
||
torch.manual_seed(args.seed) | ||
use_cuda = not args.no_cuda and torch.cuda.is_available() | ||
|
||
train_kwargs = {"batch_size": args.batch_size} | ||
test_kwargs = {"batch_size": args.test_batch_size} | ||
if use_cuda: | ||
cuda_kwargs = { | ||
"num_workers": 1, | ||
"pin_memory": True, | ||
"shuffle": True | ||
} | ||
train_kwargs.update(cuda_kwargs) | ||
test_kwargs.update(cuda_kwargs) | ||
transform = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
]) | ||
train_dataset = datasets.MNIST( | ||
args.data, | ||
train=True, | ||
download=True, | ||
transform=transform | ||
) | ||
test_dataset = datasets.MNIST( | ||
args.data, | ||
train=False, | ||
transform=transform | ||
) | ||
train_loader = torch.utils.data.DataLoader( | ||
train_dataset, | ||
**train_kwargs | ||
) | ||
test_loader = torch.utils.data.DataLoader( | ||
test_dataset, | ||
**test_kwargs | ||
) | ||
|
||
if use_cuda: | ||
device_id = int(os.environ["LOCAL_RANK"]) | ||
print(f"Using cuda:{device_id}.") | ||
device = torch.device(f"cuda:{device_id}") | ||
else: | ||
print("Using cpu") | ||
device = torch.device("cpu") | ||
model = Net().to(device) | ||
|
||
world_size = int(os.environ["WORLD_SIZE"]) | ||
is_distributed = dist.is_available() and world_size > 1 | ||
if is_distributed: | ||
dist.init_process_group(args.backend) | ||
model = nn.parallel.DistributedDataParallel(model) | ||
|
||
optimizer = optim.Adadelta(model.parameters(), lr=args.lr) | ||
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) | ||
|
||
writer = SummaryWriter(args.dir) | ||
for epoch in range(1, args.epochs + 1): | ||
train(args, model, device, train_loader, optimizer, epoch, writer) | ||
test(model, device, test_loader, epoch, writer) | ||
scheduler.step() | ||
|
||
if args.save_model: | ||
torch.save(model.state_dict(), "mnist_cnn.pt") | ||
|
||
if is_distributed: | ||
dist.destroy_process_group() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
tensorboard~=2.18.0 |