This repository contains references to Azure OpenAI, Large Language Models (LLM), and related services and libraries.
🔹Brief each item on a few lines as possible.
🔹The dates are based on the first commit, article publication, or paper version 1 issuance.
🔹Capturing a chronicle and key terms of that rapidly advancing field.
🔹Disclaimer: Please be aware that some content may be outdated.
- Section 1 🎯: RAG
- Section 2 🌌: Azure OpenAI
- Section 3 🌐: LLM Applications
- Section 4 🤖: Agent
- Section 5 🏗️: Semantic Kernel & DSPy
- Semantic Kernel: Micro-orchestration
- DSPy: Optimizer frameworks
- Section 6 🛠️: LangChain | LlamaIndex
- LangChain Features: Macro & Micro-orchestration
- LangChain Agent & Criticism
- LangChain vs Competitors
- LlamaIndex: Micro-orchestration & RAG
- Section 7 🧠: Prompting | Finetuning
- Prompt Engineering
- Finetuning: PEFT (e.g., LoRA), RLHF, SFT
- Quantization & Optimization
- Other Techniques: e.g., MoE
- Visual Prompting
- Section 8 🏄♂️: Challenges & Abilities
- Section 9 🌍: LLM Landscape
- LLM Taxonomy
- LLM Collection
- Domain-Specific LLMs: e.g., Software development
- Multimodal LLMs
- Generative AI Landscape
- Section 10 📚: Surveys & References
- LLM Surveys | Business use cases
- Building LLMs: from scratch
- LLMs for Korean & Japanese
- Section 11 🧰: AI Tools & Extensions
- Section 12 📊: Datasets
- Section 13 📝: Evaluations
- Legend 🔑:
ref
: external URLdoc
: archived doccite
: the source of commentscnt
: number of citationsgit
: GitHub linkx-ref
: Cross reference- 📺: youtube or video
ⓒ https://github.com/kimtth
all rights reserved.