Skip to content
/ cdr-ssl Public

Code repository of paper "Context-Aware Doubly-Robust Semi-Supervised Learning".

License

Notifications You must be signed in to change notification settings

kclip/cdr-ssl

Repository files navigation

Context-Aware Doubly-Robust Semi-Supervised Learning

Project structure

Reproduce Experiments

Setup Python Environment

  • Download and install miniconda
  • Install conda environment by running the command:
    conda env create -f ./environment.yaml
  • Source the environment by running:
    conda activate cdr

Toy Example

  • Execute toy-example protocols directly as:
bash ./study/protocols/commands/toy_example_supervised_erm.sh
bash ./study/protocols/commands/toy_example_pseudo_erm.sh
bash ./study/protocols/commands/toy_example_dr.sh
bash ./study/protocols/commands/toy_example_cdr.sh
  • OR send protocols commands to Slurm cluster via:
sbatch ./study/protocols/slurm/toy_example_supervised.sh
sbatch ./study/protocols/slurm/toy_example_pseudo_erm.sh
sbatch ./study/protocols/slurm/toy_example_dr.sh
sbatch ./study/protocols/slurm/toy_example_cdr.sh
  • Generate toy-example plots in ./logs/figures as:
python ./study/plots_toy_example.py +experiment=toy_example logs_subdir=toy_example

Beamforming

  • Execute beamforming protocols directly as:
bash ./study/protocols/commands/beamforming_supervised_erm.sh
bash ./study/protocols/commands/beamforming_pseudo_erm.sh
bash ./study/protocols/commands/beamforming_dr.sh
bash ./study/protocols/commands/beamforming_tdr.sh
bash ./study/protocols/commands/beamforming_cdr.sh
  • OR send protocols commands to Slurm cluster via:
sbatch ./study/protocols/slurm/toy_example_supervised.sh
sbatch ./study/protocols/slurm/toy_example_pseudo_erm.sh
sbatch ./study/protocols/slurm/toy_example_dr.sh
sbatch ./study/protocols/slurm/toy_example_tdr.sh
sbatch ./study/protocols/slurm/toy_example_cdr.sh
  • Generate beamforming plots in ./logs/figures as:
python ./study/plots_beamforming.py +experiment=beamforming logs_subdir=beamforming

About

Code repository of paper "Context-Aware Doubly-Robust Semi-Supervised Learning".

Topics

Resources

License

Stars

Watchers

Forks