Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Recipes for ICMC-ASR competition #1438

Open
wants to merge 13 commits into
base: master
Choose a base branch
from
147 changes: 147 additions & 0 deletions egs/icmcasr/ASR/local/compile_lg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
This script takes as input lang_dir and generates LG from

- L, the lexicon, built from lang_dir/L_disambig.pt

Caution: We use a lexicon that contains disambiguation symbols

- G, the LM, built from data/lm/G_3_gram.fst.txt

The generated LG is saved in $lang_dir/LG.pt
"""
import argparse
import logging
from pathlib import Path

import k2
import torch

from icefall.lexicon import Lexicon


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)
parser.add_argument(
"--lm",
type=str,
default="G_3_gram",
help="""Stem name for LM used in HLG compiling.
""",
)

return parser.parse_args()


def compile_LG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.

Return:
An FSA representing LG.
"""
lexicon = Lexicon(lang_dir)
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))

if Path(f"data/lm/{lm}.pt").is_file():
logging.info(f"Loading pre-compiled {lm}")
d = torch.load(f"data/lm/{lm}.pt")
G = k2.Fsa.from_dict(d)
else:
logging.info(f"Loading {lm}.fst.txt")
with open(f"data/lm/{lm}.fst.txt") as f:
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
torch.save(G.as_dict(), f"data/lm/{lm}.pt")

first_token_disambig_id = lexicon.token_table["#0"]
first_word_disambig_id = lexicon.word_table["#0"]

L = k2.arc_sort(L)
G = k2.arc_sort(G)

logging.info("Intersecting L and G")
LG = k2.compose(L, G)
logging.info(f"LG shape: {LG.shape}")

logging.info("Connecting LG")
LG = k2.connect(LG)
logging.info(f"LG shape after k2.connect: {LG.shape}")

logging.info(type(LG.aux_labels))
logging.info("Determinizing LG")

LG = k2.determinize(LG, k2.DeterminizeWeightPushingType.kLogWeightPushing)
logging.info(type(LG.aux_labels))

logging.info("Connecting LG after k2.determinize")
LG = k2.connect(LG)

logging.info("Removing disambiguation symbols on LG")

# LG.labels[LG.labels >= first_token_disambig_id] = 0
# see https://github.com/k2-fsa/k2/pull/1140
labels = LG.labels
labels[labels >= first_token_disambig_id] = 0
LG.labels = labels

assert isinstance(LG.aux_labels, k2.RaggedTensor)
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0

LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")

LG = k2.connect(LG)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)

logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)

return LG


def main():
args = get_args()
lang_dir = Path(args.lang_dir)

if (lang_dir / "LG.pt").is_file():
logging.info(f"{lang_dir}/LG.pt already exists - skipping")
return

logging.info(f"Processing {lang_dir}")

LG = compile_LG(lang_dir, args.lm)
logging.info(f"Saving LG.pt to {lang_dir}")
torch.save(LG.as_dict(), f"{lang_dir}/LG.pt")


if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)

main()
133 changes: 133 additions & 0 deletions egs/icmcasr/ASR/local/compute_fbank_aec_iva.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# 2023 NVIDIA Corp. (authors: Wen Ding)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
This file computes fbank features of the LibriSpeech dataset.
It looks for manifests in the directory data/manifests.

The generated fbank features are saved in data/fbank.
"""

import argparse
import logging
import os
from pathlib import Path
from typing import Optional

import sentencepiece as spm
import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached

from icefall.utils import get_executor, str2bool

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def get_args():
parser = argparse.ArgumentParser()

parser.add_argument(
"--perturb-speed",
type=str2bool,
default=True,
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
)

return parser.parse_args()


def compute_fbank_aec_iva(
perturb_speed: Optional[bool] = True,
):
src_dir = Path("data_aec_iva/manifests")
output_dir = Path("data_aec_iva/fbank")
num_jobs = 20
num_mel_bins = 80

dataset_parts = (
"dev_aec_iva",
"train_aec_iva",
)

prefix = "icmcasr-aec-iva"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None

assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)

extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))

with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
if (output_dir / cuts_filename).is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)

if "train" in partition:
if perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
cut_set.to_file(output_dir / cuts_filename)


if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_aec_iva(
perturb_speed=args.perturb_speed,
)

Loading
Loading