Skip to content

Commit

Permalink
Add recipe for the yes_no dataset. (#16)
Browse files Browse the repository at this point in the history
* Add recipe for the yes_no dataset.

* Refactoring: Remove unused code.

* Add Colab notebook for the yesno dataset.

* Add GitHub actions to run yesno.

* Fix a typo.

* Minor fixes.

* Train more epochs for GitHub actions.

* Minor fixes.

* Minor fixes.

* Fix style issues.
  • Loading branch information
csukuangfj authored Aug 23, 2021
1 parent 19c4214 commit 6c2c9b9
Show file tree
Hide file tree
Showing 17 changed files with 2,012 additions and 9 deletions.
89 changes: 89 additions & 0 deletions .github/workflows/run-yesno-recipe.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# Copyright 2021 Fangjun Kuang ([email protected])

# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

name: run-yesno-recipe

on:
push:
branches:
- master
pull_request:
branches:
- master

jobs:
run-yesno-recipe:
runs-on: ${{ matrix.os }}
strategy:
matrix:
# os: [ubuntu-18.04, macos-10.15]
# TODO: enable macOS for CPU testing
os: [ubuntu-18.04]
python-version: [3.8]
fail-fast: false

steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0

- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v1
with:
python-version: ${{ matrix.python-version }}

- name: Install libnsdfile and libsox
if: startsWith(matrix.os, 'ubuntu')
run: |
sudo apt update
sudo apt install -q -y libsndfile1-dev libsndfile1 ffmpeg
sudo apt install -q -y --fix-missing sox libsox-dev libsox-fmt-all
- name: Install Python dependencies
run: |
python3 -m pip install --upgrade pip black flake8
python3 -m pip install -U pip
python3 -m pip install k2==1.4.dev20210822+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
python3 -m pip install torchaudio==0.7.2
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
# We are in ./icefall and there is a file: requirements.txt in it
python3 -m pip install -r requirements.txt
- name: Run yesno recipe
shell: bash
working-directory: ${{github.workspace}}
run: |
export PYTHONPATH=$PWD:$PYTHONPATH
echo $PYTHONPATH
ls -lh
# The following three lines are for macOS
lib_path=$(python -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())")
echo "lib_path: $lib_path"
export DYLD_LIBRARY_PATH=$lib_path:$DYLD_LIBRARY_PATH
ls -lh $lib_path
cd egs/yesno/ASR
./prepare.sh
python3 ./tdnn/train.py --num-epochs 100
python3 ./tdnn/decode.py --epoch 99
python3 ./tdnn/decode.py --epoch 95
python3 ./tdnn/decode.py --epoch 90
python3 ./tdnn/decode.py --epoch 80
python3 ./tdnn/decode.py --epoch 70
python3 ./tdnn/decode.py --epoch 60
# TODO: Check that the WER is less than some value
19 changes: 16 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,10 +48,22 @@ python3 -c "import icefall; print(icefall.__file__)"

It should print the path to `icefall`.

## Run recipes
## Recipes

At present, only LibriSpeech recipe is provided. Please
follow [egs/librispeech/ASR/README.md][LibriSpeech] to run it.
At present, two recipes are provided:

- [LibriSpeech][LibriSpeech]
- [yesno][yesno] [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)

### Yesno

For the yesno recipe, training with 50 epochs takes less than 2 minutes using **CPU**.

The WER is

```
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
```

## Use Pre-trained models

Expand All @@ -60,6 +72,7 @@ for how to use pre-trained models.
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)


[yesno]: egs/yesno/ASR/README.md
[LibriSpeech]: egs/librispeech/ASR/README.md
[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html#
[k2]: https://github.com/k2-fsa/k2
Expand Down
2 changes: 1 addition & 1 deletion egs/librispeech/ASR/local/compute_fbank_librispeech.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

"""
This file computes fbank features of the LibriSpeech dataset.
Its looks for manifests in the directory data/manifests.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
Expand Down
2 changes: 1 addition & 1 deletion egs/librispeech/ASR/local/compute_fbank_musan.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

"""
This file computes fbank features of the musan dataset.
Its looks for manifests in the directory data/manifests.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
Expand Down
4 changes: 2 additions & 2 deletions egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# Copyright 2021 Piotr Żelasko
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
Expand Down Expand Up @@ -40,7 +40,7 @@

class LibriSpeechAsrDataModule(DataModule):
"""
DataModule for K2 ASR experiments.
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
Expand Down
2 changes: 1 addition & 1 deletion egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
Original file line number Diff line number Diff line change
Expand Up @@ -348,7 +348,7 @@ def main():
logging.info(f"device: {device}")

HLG = k2.Fsa.from_dict(
torch.load("data/lang_phone/HLG.pt", map_location="cpu")
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
)
HLG = HLG.to(device)
assert HLG.requires_grad is False
Expand Down
15 changes: 15 additions & 0 deletions egs/yesno/ASR/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
## Yesno recipe

You can run the recipe with **CPU**.


[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)

The above Colab notebook finishes the training using **CPU**
within two minutes (50 epochs in total).

The WER is

```
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
```
134 changes: 134 additions & 0 deletions egs/yesno/ASR/local/compile_hlg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
#!/usr/bin/env python3

"""
This script takes as input lang_dir and generates HLG from
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
- L, the lexicon, built from lang_dir/L_disambig.pt
Caution: We use a lexicon that contains disambiguation symbols
- G, the LM, built from data/lm/G.fst.txt
The generated HLG is saved in $lang_dir/HLG.pt
"""
import argparse
import logging
from pathlib import Path

import k2
import torch

from icefall.lexicon import Lexicon


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)

return parser.parse_args()


def compile_HLG(lang_dir: str) -> k2.Fsa:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
Return:
An FSA representing HLG.
"""
lexicon = Lexicon(lang_dir)
max_token_id = max(lexicon.tokens)
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
H = k2.ctc_topo(max_token_id)
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))

logging.info("Loading G.fst.txt")
with open("data/lm/G.fst.txt") as f:
G = k2.Fsa.from_openfst(f.read(), acceptor=False)

first_token_disambig_id = lexicon.token_table["#0"]
first_word_disambig_id = lexicon.word_table["#0"]

L = k2.arc_sort(L)
G = k2.arc_sort(G)

logging.info("Intersecting L and G")
LG = k2.compose(L, G)
logging.info(f"LG shape: {LG.shape}")

logging.info("Connecting LG")
LG = k2.connect(LG)
logging.info(f"LG shape after k2.connect: {LG.shape}")

logging.info(type(LG.aux_labels))
logging.info("Determinizing LG")

LG = k2.determinize(LG)
logging.info(type(LG.aux_labels))

logging.info("Connecting LG after k2.determinize")
LG = k2.connect(LG)

logging.info("Removing disambiguation symbols on LG")

LG.labels[LG.labels >= first_token_disambig_id] = 0

assert isinstance(LG.aux_labels, k2.RaggedInt)
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0

LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")

LG = k2.connect(LG)
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)

logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)

logging.info("Composing H and LG")
# CAUTION: The name of the inner_labels is fixed
# to `tokens`. If you want to change it, please
# also change other places in icefall that are using
# it.
HLG = k2.compose(H, LG, inner_labels="tokens")

logging.info("Connecting LG")
HLG = k2.connect(HLG)

logging.info("Arc sorting LG")
HLG = k2.arc_sort(HLG)
logging.info(f"HLG.shape: {HLG.shape}")

return HLG


def main():
args = get_args()
lang_dir = Path(args.lang_dir)

if (lang_dir / "HLG.pt").is_file():
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
return

logging.info(f"Processing {lang_dir}")

HLG = compile_HLG(lang_dir)
logging.info(f"Saving HLG.pt to {lang_dir}")
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")


if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)

logging.basicConfig(format=formatter, level=logging.INFO)

main()
81 changes: 81 additions & 0 deletions egs/yesno/ASR/local/compute_fbank_yesno.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#!/usr/bin/env python3

"""
This file computes fbank features of the yesno dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""

import logging
import os
from pathlib import Path

import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
from lhotse.recipes.utils import read_manifests_if_cached

from icefall.utils import get_executor

# Torch's multithreaded behavior needs to be disabled or it wastes a
# lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def compute_fbank_yesno():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")

# This dataset is rather small, so we use only one job
num_jobs = min(1, os.cpu_count())
num_mel_bins = 23

dataset_parts = (
"train",
"test",
)
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts, output_dir=src_dir
)
assert manifests is not None

extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))

with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
if (output_dir / f"cuts_{partition}.json.gz").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 1, # use one job
executor=ex,
storage_type=LilcomHdf5Writer,
)
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")


if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)

logging.basicConfig(format=formatter, level=logging.INFO)

compute_fbank_yesno()
Loading

0 comments on commit 6c2c9b9

Please sign in to comment.