Skip to content
/ PDE-Net Public

[TIP2022] Deep Posterior Distribution-based Embedding for Hyperspectral Image Super-resolution

Notifications You must be signed in to change notification settings

jinnh/PDE-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PDE-Net

This is an implementation of Deep Posterior Distribution-based Embedding for Hyperspectral Image Super-resolution.

[arXiv], [IEEE]

Requirement

python 3.7, Pytorch 1.7.0, and cuda 11.0

Quick Start

Dataset

You can refer to the following links to download the datasets, CAVE, and Harvard. And run the matlab programs in the folder 'datasets' to get the pre-processed training and testing data.

Training

You can train directly by using the file 'train.sh':

bash train.sh

Or you can execute the following commands respectively:

python train.py --cuda --gpu "0" --dataset "CAVE" --upscale_factor 4 --model_name "template" --nEpochs 50

python train.py --cuda --gpu "0" --dataset "CAVE" --upscale_factor 4 --model_name "pde-net" --nEpochs 100 --resume checkpoints/CAVE_x4/template_4_epoch_50.pth

Testing

python test.py --cuda --gpu "0" --dataset "CAVE" --model_name "pde-net" --upscale_factor 4 --checkpoint checkpoints/CAVE_x4/pde-net_4_epoch_100.pth

Citation

Please consider cite our work if you find it helpful.

@article{hou22deep,
	title={Deep Posterior Distribution-based Embedding for Hyperspectral Image Super-resolution},
	author={Hou, Jinhui and Zhu, Zhiyu and Hou, Junhui and Zeng, Huanqiang and Wu, Jinjian and Zhou, Jiantao},
	journal={IEEE Transactions on Image Processing},
	volume={31},
	number={},
	pages={5720-5732},
	year={2022},
	doi={10.1109/TIP.2022.3201478}
}

About

[TIP2022] Deep Posterior Distribution-based Embedding for Hyperspectral Image Super-resolution

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published