ChronoKGE is a knowledge graph embedding framework to ease time-focused research in representation learning.
Python 3.6+https://www.python.org/downloads/
PyTorch 1.8+https://pytorch.org/get-started/locally/
Optuna 2.9+https://optuna.readthedocs.io/en/latest/installation.html
Selenium 3.14+https://selenium-python.readthedocs.io/installation.html
pip3 install -r requirements.txt
runExecutes the experiment with the given parameters.
python3 -m chrono_kge [<model-args>] run [<run-args>]
For more details, see model arguments and run arguments.
python3 -m chrono_kge -mc <main_config> run -rc <run_config>
tunePerforms parameter tuning with the provided amount of trials.
python3 -m chrono_kge [<model-args>] tune [<tune-args>]
For more details, see model arguments and tune arguments.
python3 -m chrono_kge -mc <main_config> tune -tc <tune_config>
Run with default parameters model=lowfer-tnt, kg=icews14, dim=300, lr=0.01 using YAML.
python3 -m chrono_kge -mc "config/main/default.yaml" run -rc "config/run/default.yaml"
Run with default parameters model=lowfer-tnt, kg=icews14, dim=300, lr=0.01 using CMD.
python3 -m chrono_kge -m "t-lowfer" -d "icews14" -am 1 -mm 1 run -lr 0.01 -ed 300
-m MODEL, --model MODEL
Learning model.
Supported models: lowfer, tlowfer.
Default tlowfer.
-d DATASET, --dataset DATASET
Which dataset to use.
Supported datasets: see knowledge graphs below.
Default icews14.
-e EPOCHS, --epochs EPOCHS
Number of total epochs.
Default 1000.
-am AUGMENT_MODE, --aug_mode AUGMENT_MODE
The mode of augmentation.
Supported methods: see augmentation modes below.
Default 0.
-rm REG_MODE, --reg_mode REG_MODE
The mode of regularization.
Supported methods: see regularization modes below.
Default 0.
-mm MODULATION_MODE, --mod_mode MODULATION_MODE
Modulation mode.
Supported modulations: see modulation modes below.
Default 0.
-em ENC_MODE, --enc_mode ENC_MODE
Supported methods: see encoding modes below.
Default 0.
-c, --cuda
Whether to use cuda (GPU) or not (CPU).
Default CPU.
--save
Whether to save results.
Default False.
0: None
1: Reverse triples
2: Back translation (pre)
3: Back translation (ad-hoc)
4: Reverse triples + Back translation (pre)
2: Augmentation using precomputed translations.
3: Ad-hoc back translation using free Google Translate service.
High confidence, max. 2 translations, language order ch-zn, es, de, en.
Supported KB: ICEWS14, ICEWS05-15, ICEWS18
0: None
1: Omega (embedding regularization)
2: Lambda (time regularisation)
3: Omega + Lambda
* Tensor norms: Omega: p=3, Lambda: p=4
Extends LowFER with dynamic relations.
mode=0
Extends LowFER with dynamic and static relations.
mode=1
Results for semantic matching models on ICEWS14 and ICEWS05-15.
| Method | MRR | H@10 | H@3 | H@1 | 
|---|---|---|---|---|
| DE-DistMult | 0.501 | 0.708 | 0.569 | 0.392 | 
| DE-SimplE | 0.526 | 0.725 | 0.592 | 0.418 | 
| TComplEx | 0.560 | 0.730 | 0.610 | 0.470 | 
| TNTComplEx | 0.560 | 0.740 | 0.610 | 0.460 | 
| TuckERT | 0.594 | 0.731 | 0.640 | 0.518 | 
| TuckERTNT | 0.604 | 0.753 | 0.655 | 0.521 | 
| LowFER-T | 0.584 | 0.734 | 0.630 | 0.505 | 
| LowFER-TNT | 0.586 | 0.735 | 0.632 | 0.507 | 
| LowFER-CFB | 0.623 | 0.757 | 0.671 | 0.549 | 
| LowFER-FTP | 0.617 | 0.765 | 0.665 | 0.537 | 
| Method | MRR | H@10 | H@3 | H@1 | 
|---|---|---|---|---|
| DE-DistMult | 0.484 | 0.718 | 0.546 | 0.366 | 
| DE-SimplE | 0.513 | 0.748 | 0.578 | 0.392 | 
| TComplEx | 0.580 | 0.760 | 0.640 | 0.490 | 
| TNTComplEx | 0.600 | 0.780 | 0.650 | 0.500 | 
| TuckERT | 0.627 | 0.769 | 0.674 | 0.550 | 
| TuckERTNT | 0.638 | 0.783 | 0.686 | 0.559 | 
| LowFER-T | 0.559 | 0.714 | 0.605 | 0.476 | 
| LowFER-TNT | 0.562 | 0.717 | 0.608 | 0.480 | 
| LowFER-CFB | 0.638 | 0.791 | 0.690 | 0.555 | 
| LowFER-FTP | 0.625 | 0.792 | 0.681 | 0.534 | 
For an exhaustive summary of related benchmark results, visit TKGC Benchmark Results.
If you find our work useful, please consider citing.
@inproceedings{dikeoulias-etal-2022-temporal,
    title = "Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic Representations",
    author = {Dikeoulias, Ioannis  and
      Amin, Saadullah  and
      Neumann, G{\"u}nter},
    booktitle = "Proceedings of the 7th Workshop on Representation Learning for NLP",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.repl4nlp-1.12",
    doi = "10.18653/v1/2022.repl4nlp-1.12",
    pages = "111--120",
}