Skip to content

Add dlrm_v2 CPU FP8 QDQ example #2239

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
Step-by-Step
============

This document describes the step-by-step instructions for FP8 quantization for [DLRM v2](https://github.com/facebookresearch/dlrm/tree/main/torchrec_dlrm) with Intel® Neural Compressor.


# Prerequisite

### 1. Environment

```shell
bash setup.sh
pip install -r requirements.txt
```

### 2. Prepare Dataset

You can download preprocessed dataset by following
https://github.com/mlcommons/inference/tree/master/recommendation/dlrm_v2/pytorch#download-preprocessed-dataset


### 3. Prepare pretrained model

You can download and unzip checkpoint by following
https://github.com/mlcommons/inference/tree/master/recommendation/dlrm_v2/pytorch#downloading-model-weights


# Run with CPU

```shell
TORCHINDUCTOR_FREEZING=1 python main.py --model_path /path/to/model_weights --data_path /path/to/dataset --calib --quant --accuracy
```
or only do quantization after calibration is done
```shell
TORCHINDUCTOR_FREEZING=1 python main.py --model_path /path/to/model_weights --data_path /path/to/dataset --quant --accuracy
```

Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
#
# -*- coding: utf-8 -*-
#
# Copyright (c) 2025 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import os
from typing import List

from torch import distributed as dist
from torch.utils.data import DataLoader
from torchrec.datasets.criteo import (
CAT_FEATURE_COUNT,
DAYS,
DEFAULT_CAT_NAMES,
DEFAULT_INT_NAMES,
InMemoryBinaryCriteoIterDataPipe,
)
from torchrec.datasets.random import RandomRecDataset

# OSS import
try:
# pyre-ignore[21]
# @manual=//ai_codesign/benchmarks/dlrm/torchrec_dlrm/data:multi_hot_criteo
from data.multi_hot_criteo import MultiHotCriteoIterDataPipe

except ImportError:
pass

# internal import
try:
from .multi_hot_criteo import MultiHotCriteoIterDataPipe # noqa F811
except ImportError:
pass

STAGES = ["train", "val", "test"]


def _get_random_dataloader(
args: argparse.Namespace,
stage: str,
) -> DataLoader:
attr = f"limit_{stage}_batches"
num_batches = getattr(args, attr)
if stage in ["val", "test"] and args.test_batch_size is not None:
batch_size = args.test_batch_size
else:
batch_size = args.batch_size
return DataLoader(
RandomRecDataset(
keys=DEFAULT_CAT_NAMES,
batch_size=batch_size,
hash_size=args.num_embeddings,
hash_sizes=(
args.num_embeddings_per_feature
if hasattr(args, "num_embeddings_per_feature")
else None
),
manual_seed=args.seed if hasattr(args, "seed") else None,
ids_per_feature=1,
num_dense=len(DEFAULT_INT_NAMES),
num_batches=num_batches,
),
batch_size=None,
batch_sampler=None,
pin_memory=args.pin_memory,
num_workers=0,
)


def _get_in_memory_dataloader(
args: argparse.Namespace,
stage: str,
) -> DataLoader:
dir_path = args.data_path
sparse_part = "sparse_multi_hot.npz"
datapipe = MultiHotCriteoIterDataPipe

if stage == "train":
stage_files: List[List[str]] = [
[os.path.join(dir_path, f"day_{i}_dense.npy") for i in range(DAYS - 1)],
[os.path.join(dir_path, f"day_{i}_{sparse_part}") for i in range(DAYS - 1)],
[os.path.join(dir_path, f"day_{i}_labels.npy") for i in range(DAYS - 1)],
]
elif stage in ["val", "test"]:
stage_files: List[List[str]] = [
[os.path.join(dir_path, f"day_{DAYS-1}_dense.npy")],
[os.path.join(dir_path, f"day_{DAYS-1}_{sparse_part}")],
[os.path.join(dir_path, f"day_{DAYS-1}_labels.npy")],
]
if stage in ["val", "test"] and args.test_batch_size is not None:
batch_size = args.test_batch_size
else:
batch_size = args.batch_size
dataloader = DataLoader(
datapipe(
stage,
*stage_files, # pyre-ignore[6]
batch_size=batch_size,
rank=0, # dist.get_rank(),
world_size=1, # dist.get_world_size(),
drop_last=args.drop_last_training_batch if stage == "train" else False,
shuffle_batches=args.shuffle_batches,
shuffle_training_set=args.shuffle_training_set,
shuffle_training_set_random_seed=args.seed,
mmap_mode=args.mmap_mode,
hashes=(
args.num_embeddings_per_feature
if args.num_embeddings is None
else ([args.num_embeddings] * CAT_FEATURE_COUNT)
),
),
batch_size=None,
pin_memory=args.pin_memory,
collate_fn=lambda x: x,
)
return dataloader


def get_dataloader(args: argparse.Namespace, backend: str, stage: str) -> DataLoader:
"""
Gets desired dataloader from dlrm_main command line options. Currently, this
function is able to return either a DataLoader wrapped around a RandomRecDataset or
a Dataloader wrapped around an InMemoryBinaryCriteoIterDataPipe.

Args:
args (argparse.Namespace): Command line options supplied to dlrm_main.py's main
function.
backend (str): "nccl" or "gloo".
stage (str): "train", "val", or "test".

Returns:
dataloader (DataLoader): PyTorch dataloader for the specified options.

"""
stage = stage.lower()
if stage not in STAGES:
raise ValueError(f"Supplied stage was {stage}. Must be one of {STAGES}.")

args.pin_memory = (
(backend == "nccl") if not hasattr(args, "pin_memory") else args.pin_memory
)

return _get_in_memory_dataloader(args, stage)
Loading