@@ -20,7 +20,6 @@ module attributes {"ttg.num-warps" = 4 : i32, "ttg.threads-per-warp" = 16 : i32,
20
20
%c0_i32 = arith.constant 0 : i32
21
21
%c1_i32 = arith.constant 1 : i32
22
22
%cst_0 = arith.constant dense <0.000000e+00 > : tensor <64 x32 xf16 , #blocked >
23
- %cst_1 = arith.constant dense <0.000000e+00 > : tensor <32 x256 xf16 , #blocked1 >
24
23
%c63_i32 = arith.constant 63 : i32
25
24
%c255_i32 = arith.constant 255 : i32
26
25
%c31_i32 = arith.constant 31 : i32
@@ -79,25 +78,34 @@ module attributes {"ttg.num-warps" = 4 : i32, "ttg.threads-per-warp" = 16 : i32,
79
78
%51 = arith.muli %arg7 , %c32_i32 : i32
80
79
%52 = tt.splat %51 : i32 -> tensor <32 x256 xi32 , #blocked1 >
81
80
// COM: There are 3 stages in loop pipelining, the first 2 prefetching stages are before the loop and the last one is inside the loop.
82
- // CHECK: %[[LOAD_MASK:.*]] = arith.cmpi slt, {{.*}}
83
- // CHECK: %[[LOOP_MASK:.*]] = tt.splat %[[LOAD_MASK]] : i1 -> tensor<64x32xi1, #[[$BLOCK_0]]>
84
- // CHECK: triton_intel_gpu.prefetch {{.*}}, %[[LOOP_MASK]] {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
81
+ // CHECK: %[[LOAD_MASK:.*]] = arith.cmpi slt, {{.*}} : tensor<1x32xi32, #[[$BLOCK_0]]>
82
+ // CHECK-NEXT: %[[LOAD_MASK_2D:.*]] = tt.broadcast %[[LOAD_MASK]] : tensor<1x32xi1, #[[$BLOCK_0]]> -> tensor<64x32xi1, #[[$BLOCK_0]]>
83
+ // CHECK-NEXT: %[[LOOP_MASK:.*]] = tt.splat {{.*}} : i1 -> tensor<64x32xi1, #[[$BLOCK_0]]>
84
+ // CHECK-NEXT: %[[PREFETCH_MASK:.*]] = arith.andi %[[LOOP_MASK]], %[[LOAD_MASK_2D]] : tensor<64x32xi1, #[[$BLOCK_0]]>
85
+ // CHECK-NEXT: triton_intel_gpu.prefetch {{.*}}, %[[PREFETCH_MASK]] {{.*}}triton_intel_gpu.block_io = "row_major"{{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
85
86
// CHECK: triton_intel_gpu.prefetch {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
86
87
// CHECK: triton_intel_gpu.prefetch {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
87
88
// CHECK: triton_intel_gpu.prefetch {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
88
- // CHECK: scf.for %[[VAL_92:.*]] = {{.*}} to {{.*}} step {{.*}} iter_args(%[[VAL_93:.*]] = {{.*}}, %[[VAL_94:.*]] = {{.*}}, %[[VAL_95:.*]] = {{.*}}, %[[VAL_96:.*]] = {{.*}}, %[[VAL_97 :.*]] = {{.*}}) -> (tensor<64x256xf32, #[[$DPAS]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>) : i32 {
89
- // CHECK: %[[LOAD_MASK:.*]] = arith.cmpi slt, {{.*}}
89
+ // CHECK: scf.for %[[VAL_92:.*]] = {{.*}} to {{.*}} step {{.*}} iter_args(%[[VAL_93:.*]] = {{.*}}, %[[VAL_94:.*]] = {{.*}}, %[[VAL_95:.*]] = {{.*}}, %[[VAL_96:.*]] = {{.*}}, %[[ARG_13 :.*]] = {{.*}}, %[[ARG_14:.*]] = {{.*}}, %[[VAL_97:.*]] = {{.*}}, %[[ARG_16:.*]] = {{.*}}, %[[ARG_17:.*]] = {{.*}}) ->
90
+ // CHECK-SAME: (tensor<64x256xf32, #[[$DPAS]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<64x32xi1, #[[$BLOCK_0]]>, tensor<64x32xi1, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, i32, i32) : i32 {
90
91
// CHECK: %[[VAL_106:.*]] = tt.addptr %[[VAL_94]], {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<64x32xi32, #[[$BLOCK_0]]>
91
92
// CHECK: %[[VAL_107:.*]] = tt.addptr %[[VAL_95]], {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<32x256xi32, #[[$BLOCK_1]]>
92
- // CHECK: %[[LOOP_MASK:.*]] = tt.splat %[[LOAD_MASK]] : i1 -> tensor<64x32xi1, #[[$BLOCK_0]]>
93
- // CHECK: triton_intel_gpu.prefetch %[[VAL_106]], %[[LOOP_MASK]] {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
94
- // CHECK: triton_intel_gpu.prefetch %[[VAL_107]], {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
93
+ // CHECK: %[[VAL_108:.*]] = arith.subi {{.*}} : i32
94
+ // CHECK: %[[VAL_109:.*]] = tt.splat %[[VAL_108]] : i32 -> tensor<1x32xi32, #blocked>
95
+ // CHECK-NEXT: %[[LOAD_MASK:.*]] = arith.cmpi slt, {{.*}}, %[[VAL_109]] : tensor<1x32xi32, #blocked>
96
+ // CHECK-NEXT: %[[LOAD_MASK_2D_1:.*]] = tt.broadcast %[[LOAD_MASK]] : tensor<1x32xi1, #blocked> -> tensor<64x32xi1, #blocked>
97
+ // CHECK-NEXT: %[[LOOP_MASK:.*]] = tt.splat {{.*}} : i1 -> tensor<64x32xi1, #[[$BLOCK_0]]>
98
+ // CHECK-NEXT: %[[PREFETCH_MASK:.*]] = arith.andi %[[LOOP_MASK]], %[[LOAD_MASK_2D_1]] : tensor<64x32xi1, #blocked>
99
+ // CHECK-NEXT: triton_intel_gpu.prefetch %[[VAL_106]], %[[PREFETCH_MASK]] {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
100
+ // CHECK: %[[PREFETCH_MASK:.*]] = tt.splat {{.*}} : i1 -> tensor<32x256xi1, #[[$BLOCK_1]]>
101
+ // CHECK-NEXT: triton_intel_gpu.prefetch %[[VAL_107]], %[[PREFETCH_MASK]] {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
95
102
// CHECK: %[[VAL_116:.*]] = tt.load %[[VAL_96]], {{.*}}, {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
96
- // CHECK: %[[VAL_120:.*]] = tt.load %[[VAL_97]], {{.*}}, {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
103
+ // CHECK: %[[VAL_120:.*]] = tt.load %[[VAL_97]] {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
97
104
// CHECK: %[[VAL_121:.*]] = ttg.convert_layout %[[VAL_116]] : tensor<64x32xf16, #[[$BLOCK_0]]> -> tensor<64x32xf16, #{{.*}}<{opIdx = 0, parent = #[[$DPAS]], kWidth = 1}>>
98
105
// CHECK: %[[VAL_122:.*]] = ttg.convert_layout %[[VAL_120]] : tensor<32x256xf16, #[[$BLOCK_1]]> -> tensor<32x256xf16, #{{.*}}<{opIdx = 1, parent = #[[$DPAS]], kWidth = 2}>>
99
106
// CHECK: %[[VAL_123:.*]] = tt.dot %[[VAL_121]], %[[VAL_122]], %[[VAL_93]], inputPrecision = tf32 : tensor<64x32xf16, #{{.*}}<{opIdx = 0, parent = #[[$DPAS]], kWidth = 1}>> * tensor<32x256xf16, #{{.*}}<{opIdx = 1, parent = #[[$DPAS]], kWidth = 2}>> -> tensor<64x256xf32, #[[$DPAS]]>
100
- // CHECK: scf.yield %[[VAL_123]], %[[VAL_106]], %[[VAL_107]], %[[VAL_94]], %[[VAL_95]] : tensor<64x256xf32, #[[$DPAS]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
107
+ // CHECK: scf.yield %[[VAL_123]], %[[VAL_106]], %[[VAL_107]], %[[VAL_94]], %[[ARG_14]], %[[LOAD_MASK_2D_1]], %[[VAL_95]], %[[ARG_17]], %[[VAL_108]] :
108
+ // CHECK-SAME: tensor<64x256xf32, #[[$DPAS]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<64x32xi1, #[[$BLOCK_0]]>, tensor<64x32xi1, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, i32, i32
101
109
%53:3 = scf.for %arg9 = %c0_i32 to %50 step %c1_i32 iter_args (%arg10 = %cst_2 , %arg11 = %38 , %arg12 = %48 ) -> (tensor <64 x256 xf32 , #dpas >, tensor <64 x32 x!tt.ptr <f16 >, #blocked >, tensor <32 x256 x!tt.ptr <f16 >, #blocked1 >) : i32 {
102
110
%72 = arith.muli %arg9 , %c32_i32 : i32
103
111
%73 = arith.subi %arg5 , %72 : i32
@@ -108,7 +116,7 @@ module attributes {"ttg.num-warps" = 4 : i32, "ttg.threads-per-warp" = 16 : i32,
108
116
%78 = tt.splat %73 : i32 -> tensor <32 x1 xi32 , #blocked1 >
109
117
%79 = arith.cmpi slt , %40 , %78 : tensor <32 x1 xi32 , #blocked1 >
110
118
%80 = tt.broadcast %79 : tensor <32 x1 xi1 , #blocked1 > -> tensor <32 x256 xi1 , #blocked1 >
111
- %81 = tt.load %arg12 , %80 , %cst_1 {triton_intel_gpu.block_io = " row_major" } : tensor <32 x256 x!tt.ptr <f16 >, #blocked1 >
119
+ %81 = tt.load %arg12 {triton_intel_gpu.block_io = " row_major" } : tensor <32 x256 x!tt.ptr <f16 >, #blocked1 >
112
120
%82 = ttg.convert_layout %77 : tensor <64 x32 xf16 , #blocked > -> tensor <64 x32 xf16 , #dot0 >
113
121
%83 = ttg.convert_layout %81 : tensor <32 x256 xf16 , #blocked1 > -> tensor <32 x256 xf16 , #dot1 >
114
122
%84 = tt.dot %82 , %83 , %arg10 , inputPrecision = tf32 : tensor <64 x32 xf16 , #dot0 > * tensor <32 x256 xf16 , #dot1 > -> tensor <64 x256 xf32 , #dpas >
0 commit comments