1. Загрузите репозиторий на свой компьютер и откройте её в вашей предпочитаемой среде разработки (IDE).
git clone https://github.com/ikanam-ai/Detection-of-welding-seams.git
2. Откройте терминал в IDE и введите туда следующую команду:
python -m venv .venv
.\.venv\Scripts\activate
3. Дождитесь создание папки .venv
затем введите следующую команду:
cd Detection-of-welding-seams/frontend/streamlit
3. Инициализация проекта:
poetry init
poetry update
poetry install
4. Запустите приложение через Poetry:
poetry run streamlit run zapusk.py
Screencast наших сервисов
Часть 1:
Часть 2:
Часть 3:
├── LICENSE <- Open-source license if one is chosen
├── Makefile <- Makefile with convenience commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
│
├── docs <- A default mkdocs project; see mkdocs.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── pyproject.toml <- Project configuration file with package metadata for Detection-of-welding-seams
│ and configuration for tools like black
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
└── Detection-of-welding-seams <- Source code for use in this project.
│
├── __init__.py <- Makes Detection-of-welding-seams a Python module
│
├── data <- Scripts to download or generate data
│ └── make_dataset.py
│
├── features <- Scripts to turn raw data into features for modeling
│ └── build_features.py
│
├── models <- Scripts to train models and then use trained models to make
│ │ predictions
│ ├── predict_model.py
│ └── train_model.py
│
└── visualization <- Scripts to create exploratory and results oriented visualizations
└── visualize.py