Skip to content

Commit

Permalink
Add updated aluminum activity calibration
Browse files Browse the repository at this point in the history
  • Loading branch information
macflo8 authored and khaeru committed Nov 26, 2024
1 parent 9acc71d commit 18be96c
Show file tree
Hide file tree
Showing 6 changed files with 126 additions and 1 deletion.
Git LFS file not shown
Git LFS file not shown
Git LFS file not shown
Git LFS file not shown
Git LFS file not shown
112 changes: 111 additions & 1 deletion message_ix_models/model/material/data_aluminum.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import os
from collections import defaultdict
from collections.abc import Iterable

Expand Down Expand Up @@ -469,13 +470,15 @@ def gen_data_aluminum(

ts_dict = gen_data_alu_ts(data_aluminum_ts, nodes)
ts_dict.update(gen_hist_new_cap())
ts_dict = combine_df_dictionaries(ts_dict, gen_hist_act())

rel_dict = gen_data_alu_rel(data_aluminum_rel, modelyears)

trade_dict = gen_data_alu_trade(scenario)

results_aluminum = combine_df_dictionaries(
const_dict, ts_dict, rel_dict, demand_dict, trade_dict
)

return results_aluminum


Expand Down Expand Up @@ -827,3 +830,110 @@ def compute_differences(df, ref_col):
ref_values = ref_values.where(df[col] <= ref_values, df[col])

return differences


def load_bgs_data():
bgs_data_path = package_data_path("material", "aluminum", "bgs_data")

dfs = []

for fname in os.listdir(bgs_data_path):
if not fname.endswith(".xlsx"):
continue
# read and format BGS data
df_prim = pd.read_excel(bgs_data_path + fname, skipfooter=9, skiprows=1)
year_cols = df_prim.columns[2::2]
df_prim = df_prim[
[df_prim.columns.tolist()[0]] + df_prim.columns[3::2].tolist()
]
df_prim.columns = ["Country"] + [int(i) for i in year_cols]
df_prim["ISO"] = df_prim["Country"].apply(
lambda x: get_pycountry_iso(
x,
{
"Turkey": "TUR",
"Russia": "RUS",
"Bosnia & Herzegovina": "BIH",
"Czechoslovakia": "CSK",
"German Democratic Rep": "DEU",
"Korea (Rep. of)": "KOR",
"Soviet Union": "RUS",
"Korea, Dem. P.R. of": "PRK",
"Serbia and Montenegro": "SRB",
"Yugoslavia": "YUG",
"German Federal Republic": "DEU",
},
)
)
df_prim.drop("Country", axis=1, inplace=True)
for year in [i for i in df_prim.columns if isinstance(i, int)]:
df_prim[year] = pd.to_numeric(df_prim[year], errors="coerce")
dfs.append(df_prim)

df_prim = dfs[0].groupby("ISO").sum()
for _df in dfs[1:]:
df_prim = _df.groupby("ISO").sum().join(df_prim, how="outer")
df_prim = df_prim.dropna(how="all")
df_prim = df_prim[sorted(df_prim.columns)]

df_prim.reset_index(inplace=True)

# add R12 column
df_prim = add_R12_column(
df_prim.rename(columns={"ISO": "COUNTRY"}),
package_data_path("node", "R12_worldsteel.yaml"),
)
df_prim.rename(columns={"COUNTRY": "ISO"}, inplace=True)

return df_prim


def gen_hist_act():
df_prim = load_bgs_data()
df_prim_r12 = df_prim.groupby("R12").sum(numeric_only=True).div(10**6)

# Soderberg
df_ss_act = df_prim_r12[[2015, 2020]].copy(deep=True)
# calculate historical production with soderberg electrodes in the only 3 regions
# that still have soderberg capacity (based on capacity data from genisim)
df_ss_act.loc["R12_WEU"] *= 0.025
df_ss_act.loc["R12_LAM"] *= 0.25
df_ss_act.loc["R12_FSU"] *= 0.65
df_ss_act.loc[["R12_FSU", "R12_LAM", "R12_WEU"]]
df_ss_act = (
df_ss_act.reset_index()
.rename(columns={"R12": "node_loc"})
.melt(id_vars="node_loc", var_name="year_act")
)
df_ss_act = df_ss_act.assign(
technology="soderberg_aluminum", mode="M1", time="year", unit="Mt/yr"
)
df_ss_act = make_df("historical_activity", **df_ss_act)

# Prebake
df_pb_act = df_prim_r12[[2015, 2020]].copy(deep=True)
# deduct historical production with soderberg electrodes in the only 3 regions that
# still have soderberg capacity (based on capacity data from genisim) to get
# production with prebaked electrodes
df_pb_act.loc["R12_WEU"] *= 1 - 0.025
df_pb_act.loc["R12_LAM"] *= 1 - 0.25
df_pb_act.loc["R12_FSU"] *= 1 - 0.65
df_pb_act = (
df_pb_act.reset_index()
.rename(columns={"R12": "node_loc"})
.melt(id_vars="node_loc", var_name="year_act")
)
df_pb_act = df_pb_act.assign(
technology="prebake_aluminum", mode="M1", time="year", unit="Mt/yr"
)
df_pb_act = make_df("historical_activity", **df_pb_act)

par_dict = {}
par_dict["bound_activity_up"] = pd.concat(
[
df_pb_act[df_pb_act["year_act"] == 2020],
df_ss_act[df_ss_act["year_act"] == 2020],
]
)
par_dict["bound_activity_lo"] = par_dict["bound_activity_up"].copy(deep=True)
return par_dict

0 comments on commit 18be96c

Please sign in to comment.