Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
hurak committed Jan 27, 2025
1 parent e1d1162 commit bc1ed97
Show file tree
Hide file tree
Showing 18 changed files with 9,040 additions and 9,040 deletions.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
f63be0ef
1b4ccf87
136 changes: 68 additions & 68 deletions classes_reset.html

Large diffs are not rendered by default.

60 changes: 30 additions & 30 deletions classes_switched.html

Large diffs are not rendered by default.

1,680 changes: 840 additions & 840 deletions complementarity_simulations.html

Large diffs are not rendered by default.

16 changes: 8 additions & 8 deletions des_automata.html
Original file line number Diff line number Diff line change
Expand Up @@ -2143,16 +2143,16 @@ <h3 class="anchored" data-anchor-id="mealy-machine">Mealy machine</h3>
<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="pp">@show</span> <span class="fu">update!</span>(dtr), <span class="fu">output</span>(dtr)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div class="cell-output cell-output-stdout">
<pre><code>x_initial = rand(0:k, n) = [0, 4, 0, 4]
output(dtr) = [0, 1, 1, 1]
(update!(dtr), output(dtr)) = ([0, 0, 4, 0], [1, 0, 1, 1])
(update!(dtr), output(dtr)) = ([1, 0, 0, 4], [0, 1, 0, 1])
(update!(dtr), output(dtr)) = ([1, 1, 0, 0], [0, 0, 1, 0])
(update!(dtr), output(dtr)) = ([1, 1, 1, 0], [0, 0, 0, 1])
(update!(dtr), output(dtr)) = ([1, 1, 1, 1], [1, 0, 0, 0])</code></pre>
<pre><code>x_initial = rand(0:k, n) = [4, 2, 3, 3]
output(dtr) = [0, 1, 1, 0]
(update!(dtr), output(dtr)) = ([4, 4, 2, 3], [0, 0, 1, 1])
(update!(dtr), output(dtr)) = ([4, 4, 4, 2], [0, 0, 0, 1])
(update!(dtr), output(dtr)) = ([4, 4, 4, 4], [1, 0, 0, 0])
(update!(dtr), output(dtr)) = ([1, 4, 4, 4], [0, 1, 0, 0])
(update!(dtr), output(dtr)) = ([1, 1, 4, 4], [0, 0, 1, 0])</code></pre>
</div>
<div class="cell-output cell-output-display" data-execution_count="1">
<pre><code>([1, 1, 1, 1], [1, 0, 0, 0])</code></pre>
<pre><code>([1, 1, 4, 4], [0, 0, 1, 0])</code></pre>
</div>
</div>
<p>We can see that although initially the there can be more tokens, after a few iterations the algorithm achieves the goal of having just one token in the ring.</p>
Expand Down
2 changes: 1 addition & 1 deletion hybrid_automata.html
Original file line number Diff line number Diff line change
Expand Up @@ -765,7 +765,7 @@ <h1 class="title">Hybrid automata</h1>
<div id="exm-thermostat" class="theorem example">
<p><span class="theorem-title"><strong>Example 1 (Thermostat – the hello world example of a hybrid automaton)</strong></span> The thermostat is a device that turns some heater <code>on</code> or <code>off</code> (or sets some valve open or closed) based on the sensed temperature. The goal is to keep the temperature around, say, <span class="math inline">18^\circ</span> C.</p>
<p>Naturally, the discrete states (modes, locations) are <code>on</code> and <code>off</code>. Initially, the heater is <code>off</code>. We can identify the first two components of the hybrid automaton: <span class="math display">\mathcal Q = \{\text{on}, \text{off}\}, \quad \mathcal Q_0 = \{\text{off}\}</span></p>
<p>The only continuous state variable is the temperature. The initial temperature not not quite certain, say it is known to be in the interval <span class="math inline">[5,10]</span>. Two more components of the hybrid automaton follow: <span class="math display">\mathcal X = \mathbb R, \quad \mathcal X_0 = \{x:x\in \mathcal X, 5\leq x\leq 10\}</span></p>
<p>The only continuous state variable is the temperature. The initial temperature is not quite certain, say, it is known to be in the interval <span class="math inline">[5,10]</span>. Two more components of the hybrid automaton follow: <span class="math display">\mathcal X = \mathbb R, \quad \mathcal X_0 = \{x:x\in \mathcal X, 5\leq x\leq 10\}</span></p>
<p>In the two modes <code>on</code> and <code>off</code>, the evolution of the temperature can be modelled by two different ODEs. Either from first-principles modelling or from system identification (or preferrably from the combination of the two) we get the two differential equations, say: <span class="math display">
f_\text{off}(x) = -0.1x,\quad f_\text{on}(x) = -0.1x + 5,
</span> which gives another component for the hybrid automaton.</p>
Expand Down
Binary file modified hybrid_automata_figures/rimless_wheel_automaton.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
156 changes: 78 additions & 78 deletions hybrid_equations.html

Large diffs are not rendered by default.

13,008 changes: 6,504 additions & 6,504 deletions max_plus_algebra.html

Large diffs are not rendered by default.

60 changes: 30 additions & 30 deletions mld_mld_and_pwa.html

Large diffs are not rendered by default.

140 changes: 70 additions & 70 deletions mpc_mld_explicit.html

Large diffs are not rendered by default.

18 changes: 9 additions & 9 deletions search.json

Large diffs are not rendered by default.

14 changes: 7 additions & 7 deletions sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
</url>
<url>
<loc>https://hurak.github.io/hys/stability_recap.html</loc>
<lastmod>2025-01-21T19:23:17.008Z</lastmod>
<lastmod>2025-01-27T16:25:56.654Z</lastmod>
</url>
<url>
<loc>https://hurak.github.io/hys/petri_nets_timed.html</loc>
Expand All @@ -46,7 +46,7 @@
</url>
<url>
<loc>https://hurak.github.io/hys/stability_concepts.html</loc>
<lastmod>2024-11-12T17:32:24.731Z</lastmod>
<lastmod>2025-01-27T16:31:29.770Z</lastmod>
</url>
<url>
<loc>https://hurak.github.io/hys/max_plus_systems.html</loc>
Expand Down Expand Up @@ -74,7 +74,7 @@
</url>
<url>
<loc>https://hurak.github.io/hys/classes_switched.html</loc>
<lastmod>2025-01-23T12:07:55.774Z</lastmod>
<lastmod>2025-01-27T16:25:14.831Z</lastmod>
</url>
<url>
<loc>https://hurak.github.io/hys/hybrid_system_course_mindmap.html</loc>
Expand Down Expand Up @@ -134,15 +134,15 @@
</url>
<url>
<loc>https://hurak.github.io/hys/stability_via_common_lyapunov_function.html</loc>
<lastmod>2024-12-23T21:24:32.414Z</lastmod>
<lastmod>2025-01-27T16:26:27.094Z</lastmod>
</url>
<url>
<loc>https://hurak.github.io/hys/mld_logic_vs_inequalities.html</loc>
<lastmod>2025-01-14T15:19:55.746Z</lastmod>
</url>
<url>
<loc>https://hurak.github.io/hys/hybrid_equations.html</loc>
<lastmod>2025-01-10T21:39:02.096Z</lastmod>
<lastmod>2025-01-27T16:22:03.552Z</lastmod>
</url>
<url>
<loc>https://hurak.github.io/hys/des_references.html</loc>
Expand Down Expand Up @@ -214,7 +214,7 @@
</url>
<url>
<loc>https://hurak.github.io/hys/stability_via_multiple_lyapunov_function.html</loc>
<lastmod>2025-01-11T11:59:09.118Z</lastmod>
<lastmod>2025-01-27T16:29:55.442Z</lastmod>
</url>
<url>
<loc>https://hurak.github.io/hys/complementarity_references.html</loc>
Expand All @@ -230,6 +230,6 @@
</url>
<url>
<loc>https://hurak.github.io/hys/hybrid_automata.html</loc>
<lastmod>2025-01-10T21:43:46.174Z</lastmod>
<lastmod>2025-01-27T16:21:30.700Z</lastmod>
</url>
</urlset>
4 changes: 2 additions & 2 deletions stability_concepts.html
Original file line number Diff line number Diff line change
Expand Up @@ -708,7 +708,7 @@ <h2 class="anchored" data-anchor-id="equilibrium-of-a-hybrid-system-modelled-by-
</div>
</div>
<p>We now consider a hybrid automaton for which the dynamics of each individual <em>mode</em> <span class="math inline">q</span> is given by <span class="math inline">\dot{\bm x} = \mathbf f_q(\bm x)</span>. The <em>invariants</em> (or <em>domains</em>) of each mode are <span class="math inline">\mathcal X_q, \, q=1, \ldots, m</span>.</p>
<p>The definition of the equilibrium <span class="math inline">\bm x_\mathrm{eq}</span> that is ofter found in the literature imposes these two conditions:</p>
<p>The definition of the equilibrium <span class="math inline">\bm x_\mathrm{eq}</span> that is often found in the literature imposes these two conditions:</p>
<ul>
<li><span class="math inline">\mathbf 0 = \mathbf f_q(\bm x_\mathrm{eq})</span> for all <span class="math inline">q\in \mathcal Q</span>,</li>
<li>the reset map <span class="math inline">r(q,q',\bm x_\mathrm{eq}) = \bm x_\mathrm{eq}</span>.</li>
Expand All @@ -720,7 +720,7 @@ <h2 class="anchored" data-anchor-id="equilibrium-of-a-hybrid-system-modelled-by-
<h2 class="anchored" data-anchor-id="equilibrium-of-a-hybrid-system-modelled-by-hybrid-equations">Equilibrium of a hybrid system modelled by hybrid equations</h2>
<p>The state vector within this modelling framework is composed by both the discrete and continuous state variables. The two conditions for the equilibrium of a hybrid automata can be translated into the hybrid equation framework, which means that the equilibrium is not just a single point but rather a set of points.</p>
<div id="exm-equilibrium-hybrid-equations" class="theorem example">
<p><span class="theorem-title"><strong>Example 1 (Equilibrium of a hybrid system modelled by hybrid equations)</strong></span> Consider a hybrid system modelled by hybrid equations, for which the state space is given by <span class="math inline">\mathcal X = \{0,1\} \times \mathbb R</span>. The dynamics of the system is given by</p>
<p><span class="theorem-title"><strong>Example 1 (Equilibrium of a hybrid system modelled by hybrid equations)</strong></span> Consider a hybrid system modelled by hybrid equations, for which the state space is given by <span class="math inline">\mathcal X = \{0,1\} \times \mathbb R</span>. The dynamics of the system is given by [TBD]</p>
</div>
<p>This makes the analysis significantly more challenging. Therefore, in our lecture we will only consider stability of hybrid automata.</p>
</section>
Expand Down
6 changes: 3 additions & 3 deletions stability_recap.html
Original file line number Diff line number Diff line change
Expand Up @@ -716,7 +716,7 @@ <h1 class="title">Recap of stability analysis for continuous dynamical systems</
<h2 class="anchored" data-anchor-id="equilibrium">Equilibrium</h2>
<p>Loosely speaking, equilibrium is a state at which the system can rest indefinitely when undisturbed by external disturbances. More technically speaking, equilibrium is a point in the state space, that is, a vector <span class="math inline">\bm x_\mathrm{eq}\in \mathbb R^n</span>, at which the vector field <span class="math inline">\mathbf f</span> vanishes, that is,<br>
<span class="math display">\mathbf f(\bm x_\mathrm{eq}) = \mathbf 0.</span></p>
<p>Without loss of generality we often assume that <span class="math inline">\bm x_\mathrm{eq} = \mathbf 0</span>, because if the equilibrium is considered anywhere else than at the origin, we can alway introduce a new <em>shifted</em> state vector <span class="math inline">\bm x_\mathrm{new}(t) = \bm x(t) - \bm x_\mathrm{eq}</span>.</p>
<p>Without loss of generality we often assume that <span class="math inline">\bm x_\mathrm{eq} = \mathbf 0</span>, because if the equilibrium is considered anywhere else than at the origin, we can always introduce a new <em>shifted</em> state vector <span class="math inline">\bm x_\mathrm{new}(t) = \bm x(t) - \bm x_\mathrm{eq}</span>.</p>
<div class="callout callout-style-default callout-caution callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
Expand Down Expand Up @@ -765,8 +765,8 @@ <h2 class="anchored" data-anchor-id="attractivity">Attractivity</h2>
</section>
<section id="asymptotic-stability" class="level2">
<h2 class="anchored" data-anchor-id="asymptotic-stability">Asymptotic stability</h2>
<p>Combination of Lyapunov stability and attractivity is called assymptotic stability.</p>
<p>If the attractivity is global, the assymptotic stability is called global too.</p>
<p>Combination of Lyapunov stability and attractivity is called asymptotic stability.</p>
<p>If the attractivity is global, the asymptotic stability is called global too.</p>
</section>
<section id="exponential-stability" class="level2">
<h2 class="anchored" data-anchor-id="exponential-stability">Exponential stability</h2>
Expand Down
2 changes: 1 addition & 1 deletion stability_via_common_lyapunov_function.html
Original file line number Diff line number Diff line change
Expand Up @@ -857,7 +857,7 @@ <h2 class="anchored" data-anchor-id="solution-set-of-an-lmi-is-convex">Solution
</section>
<section id="what-if-quadratic-lf-is-not-enough" class="level2">
<h2 class="anchored" data-anchor-id="what-if-quadratic-lf-is-not-enough">What if quadratic LF is not enough?</h2>
<p>So far we considered quadratic Lyapunov functions – and tt may be useful to display their prescription explicitly in the scalar form <span class="math display">
<p>So far we considered quadratic Lyapunov functions – and it may be useful to display their prescription explicitly in the scalar form <span class="math display">
\begin{aligned}
V(\bm x) &amp;= \bm x^\top \mathbf P \bm x\\
&amp;= \begin{bmatrix}x_1 &amp; x_2\end{bmatrix} \begin{bmatrix} p_{11} &amp; p_{12}\\ p_{12} &amp; p_{22}\end{bmatrix} \begin{bmatrix}x_1\\ x_2\end{bmatrix}\\
Expand Down
4 changes: 2 additions & 2 deletions stability_via_multiple_lyapunov_function.html
Original file line number Diff line number Diff line change
Expand Up @@ -796,7 +796,7 @@ <h1 class="title">Stability via multiple Lyapunov functions</h1>
│ └─ Convex.NegateAtom (affine; real)
│ └─ …
├─ PSD constraint (convex)
│ └─ 2×2 real variable (id: 232…843)
│ └─ 2×2 real variable (id: 726…247)
</code></pre>
</div>
</div>
Expand Down Expand Up @@ -973,7 +973,7 @@ <h2 class="anchored" data-anchor-id="using-comparison-functions-and-nonstrict-in
<p><span class="math display">
\bm x^\top \left( \mathbf A_i^\top \mathbf P_i + \mathbf P_i \mathbf A_i \right) \bm x \leq -\alpha_3 \bm x^\top \mathbf I \bm x\quad \forall \;\bm x\in \Omega_i.
</span></p>
<p>The difference now is that these conditions are only reuired to hold on some state regions, some subsets of the state space. It is now time to discuss how to characterize those regions.</p>
<p>The difference now is that these conditions are only required to hold on some state regions, some subsets of the state space. It is now time to discuss how to characterize those regions.</p>
</section>
<section id="characterization-of-subsets-of-state-space-using-lmi" class="level2">
<h2 class="anchored" data-anchor-id="characterization-of-subsets-of-state-space-using-lmi">Characterization of subsets of state space using LMI</h2>
Expand Down
Loading

0 comments on commit bc1ed97

Please sign in to comment.