Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions examples/dreambooth/train_dreambooth_lora_flux2_img2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -1695,9 +1695,13 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
cond_model_input = (cond_model_input - latents_bn_mean) / latents_bn_std

model_input_ids = Flux2Pipeline._prepare_latent_ids(model_input).to(device=model_input.device)
cond_model_input_ids = Flux2Pipeline._prepare_image_ids(cond_model_input).to(
cond_model_input_list = [cond_model_input[i].unsqueeze(0) for i in range(cond_model_input.shape[0])]
cond_model_input_ids = Flux2Pipeline._prepare_image_ids(cond_model_input_list).to(
device=cond_model_input.device
)
cond_model_input_ids = cond_model_input_ids.view(
cond_model_input.shape[0], -1, model_input_ids.shape[-1]
)

# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input)
Expand All @@ -1724,6 +1728,9 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
packed_noisy_model_input = Flux2Pipeline._pack_latents(noisy_model_input)
packed_cond_model_input = Flux2Pipeline._pack_latents(cond_model_input)

orig_input_shape = packed_noisy_model_input.shape
orig_input_ids_shape = model_input_ids.shape

# concatenate the model inputs with the cond inputs
packed_noisy_model_input = torch.cat([packed_noisy_model_input, packed_cond_model_input], dim=1)
model_input_ids = torch.cat([model_input_ids, cond_model_input_ids], dim=1)
Expand All @@ -1742,7 +1749,8 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
img_ids=model_input_ids, # B, image_seq_len, 4
return_dict=False,
)[0]
model_pred = model_pred[:, : packed_noisy_model_input.size(1) :]
model_pred = model_pred[:, : orig_input_shape[1], :]
model_input_ids = model_input_ids[:, : orig_input_ids_shape[1], :]

model_pred = Flux2Pipeline._unpack_latents_with_ids(model_pred, model_input_ids)

Expand Down
Loading