Skip to content
/ APA Public

Pytorch implementation of "Aligning Language Models to Explicitly Handle Ambiguity" (EMNLP 2024)

Notifications You must be signed in to change notification settings

heyjoonkim/APA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

49448a3 · Sep 30, 2024

History

1 Commit
Sep 30, 2024
Sep 30, 2024
Sep 30, 2024
Sep 30, 2024
Sep 30, 2024
Sep 30, 2024
Sep 30, 2024

Repository files navigation

Aligning Language Models to Explicitly Handle Ambiguity (EMNLP 2024)

Code for Alignment with Perceived Ambiguity (APA)

Run

Run sh scripts/main.sh.

  • stage_0.sh : select ambgiuous queries and build train data.
  • train.sh : train model.
  • stage_1.sh : evaluate trained model.

Configurations

Change configs/main.yaml

  • model.name : backbone
  • model.offload_path : model offload path
  • model.cache_path : huggingface cache path
  • path.data : path to load dataset
  • path.output : output path (logs, weights, ...)
  • dataset.name : test dataset name
  • pipeline.stage_index : set from 0 or 1
  • explicit.template_id : explicit inference QA template
  • explicit.evaluation_method : 'rouge' as default
  • explicit.correct_threshold : generations with score above the threshold is evaluated as correct.
  • implicit.method_id : how to measure INFOGAIN (default 0)
  • implicit.disambiguation_template_id : template id for self-disambiguation
  • implicit.generation_template_id
  • implicit.threshold : threshold value to filter ambiguous queries
  • implicit.aggregate_method
  • explanation.template_id : template to generate explanations
  • generation.num_generations_per_prompt : generation configs
  • generation.num_single_generation : generation configs
  • generation.max_new_tokens : generation configs
  • generation.temperature : generation configs
  • ablation_methods : data selection methods
  • train.num_train_epochs : train configs (number of training epochs)
  • train.per_device_train_batch_size : train configs (train batch size)
  • train.gradient_accumulation_steps : train configs (gradient accumulation steps)
  • train.learning_rate : train configs (learning rate)

About

Pytorch implementation of "Aligning Language Models to Explicitly Handle Ambiguity" (EMNLP 2024)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published