Skip to content

TensorFlow implementation of 'Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2015)'

Notifications You must be signed in to change notification settings

hb-research/dmn-tensorflow

 
 

Repository files navigation

Dynamic Memory Network hb-research

TensorFlow implementation of Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.

images

Requirements

  • Python 3.6
  • TensorFlow 1.4
  • hb-config (Singleton Config)
  • nltk (tokenizer and blue score)
  • tqdm (progress bar)

Project Structure

init Project by hb-base

.
├── config                  # Config files (.yml, .json) using with hb-config
├── data                    # dataset path
├── notebooks               # Prototyping with numpy or tf.interactivesession
├── dynamic_memory          # dmn architecture graphs (from input to output)
    ├── __init__.py             # Graph logic
    ├── encoder.py              # Encoder
    └── episode.py              # Episode and AttentionGate
├── data_loader.py          # raw_date -> precossed_data -> generate_batch (using Dataset)
├── hook.py                 # training or test hook feature (eg. print_variables)
├── main.py                 # define experiment_fn
└── model.py                # define EstimatorSpec      

Reference : hb-config, Dataset, experiments_fn, EstimatorSpec

Todo

Config

example: bAbi_task1.yml

data:
  base_path: 'data/'
  task_path: 'en-10k/'
  task_id: 1
  PAD_ID: 0

model:
  batch_size: 16
  use_pretrained: true             # (true or false)
  embed_dim: 50                    # if use_pretrained: only available 50, 100, 200, 300
  encoder_type: uni                # uni, bi
  cell_type: gru                   # lstm, gru, layer_norm_lstm, nas
  num_layers: 1
  num_units: 32
  memory_hob: 3
  dropout: 0.0
  reg_scale: 0.001

train:
  learning_rate: 0.0001
  optimizer: 'Adam'                # Adagrad, Adam, Ftrl, Momentum, RMSProp, SGD

  train_steps: 100000
  model_dir: 'logs/bAbi_task1'

  save_checkpoints_steps: 1000
  check_hook_n_iter: 1000
  min_eval_frequency: 1000

  print_verbose: False
  debug: False

Usage

Install requirements.

pip install -r requirements.txt

Then, prepare dataset and pre-trained glove.

sh scripts/fetch_babi_data.sh
sh scripts/fetch_glove_data.sh

Finally, start trand and evalueate model

python main.py --config bAbi_task1 --mode train_and_evaluate

Experiments modes

✅ : Working
◽ : Not tested yet.

  • evaluate : Evaluate on the evaluation data.
  • extend_train_hooks : Extends the hooks for training.
  • reset_export_strategies : Resets the export strategies with the new_export_strategies.
  • run_std_server : Starts a TensorFlow server and joins the serving thread.
  • test : Tests training, evaluating and exporting the estimator for a single step.
  • train : Fit the estimator using the training data.
  • train_and_evaluate : Interleaves training and evaluation.

Tensorboar

tensorboard --logdir logs

Reference

Author

Dongjun Lee ([email protected])

About

TensorFlow implementation of 'Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2015)'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 70.1%
  • Jupyter Notebook 29.3%
  • Shell 0.6%