A production-ready MLOps pipeline for complete data and model lifecycle management using DVC, MLflow, and automated CI/CD.
- Data Versioning: DVC-powered data and model versioning
- Experiment Tracking: MLflow integration for tracking experiments
- Model Registry: Centralized model version management
- Automated Pipeline: Reproducible ML pipeline with single command
- CI/CD: GitHub Actions for automated testing and validation
- API Deployment: FastAPI endpoint for model serving
data-versioning-pipeline/
├── data/ # Data directory
│ ├── raw/ # Raw datasets
│ └── processed/ # Processed datasets
├── models/ # Trained models
├── notebooks/ # Jupyter notebooks
├── src/ # Source code
│ ├── data/ # Data processing modules
│ ├── models/ # Model training/evaluation
│ ├── utils/ # Utility functions
│ └── api/ # FastAPI application
├── tests/ # Unit and integration tests
├── configs/ # Configuration files
└── README.md
Instructions coming soon...
Instructions coming soon...
Harshith
- GitHub: @harshithluc073
- Email: [email protected]
MIT License