Skip to content

Commit

Permalink
Merge branch 'master' into numpy2
Browse files Browse the repository at this point in the history
  • Loading branch information
AdamOrmondroyd committed Sep 28, 2024
2 parents a6b4e66 + a4c8521 commit 5e97567
Show file tree
Hide file tree
Showing 4 changed files with 100 additions and 16 deletions.
2 changes: 1 addition & 1 deletion README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
anesthetic: nested sampling post-processing
===========================================
:Authors: Will Handley and Lukas Hergt
:Version: 2.8.16
:Version: 2.9.1
:Homepage: https://github.com/handley-lab/anesthetic
:Documentation: http://anesthetic.readthedocs.io/

Expand Down
2 changes: 1 addition & 1 deletion anesthetic/_version.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
__version__ = '2.8.16'
__version__ = '2.9.1'
57 changes: 43 additions & 14 deletions anesthetic/samples.py
Original file line number Diff line number Diff line change
Expand Up @@ -761,7 +761,7 @@ def ns_output(self, *args, **kwargs):
" as well as average loglikelihoods: help(samples.logL_P)"
)

def stats(self, nsamples=None, beta=None):
def stats(self, nsamples=None, beta=None, norm=None):
r"""Compute Nested Sampling statistics.
Using nested sampling we can compute:
Expand Down Expand Up @@ -822,20 +822,27 @@ def stats(self, nsamples=None, beta=None):
beta : float, array-like, optional
inverse temperature(s) beta=1/kT. Default self.beta
norm : Series, :class:`Samples`, optional
:meth:`NestedSamples.stats` output used for normalisation.
Can be either a Series of mean values or Samples produced with
matching `nsamples` and `beta`. In addition to the columns
['logZ', 'D_KL', 'logL_P', 'd_G'], this adds the normalised
versions ['Delta_logZ', 'Delta_D_KL', 'Delta_logL_P', 'Delta_d_G'].
Returns
-------
if beta is scalar and nsamples is None:
Series, index ['logZ', 'd_G', 'DK_L', 'logL_P']
Series, index ['logZ', 'd_G', 'D_KL', 'logL_P']
elif beta is scalar and nsamples is int:
:class:`Samples`, index range(nsamples),
columns ['logZ', 'd_G', 'DK_L', 'logL_P']
columns ['logZ', 'd_G', 'D_KL', 'logL_P']
elif beta is array-like and nsamples is None:
:class:`Samples`, index beta,
columns ['logZ', 'd_G', 'DK_L', 'logL_P']
columns ['logZ', 'd_G', 'D_KL', 'logL_P']
elif beta is array-like and nsamples is int:
:class:`Samples`, index :class:`pandas.MultiIndex` the product of
beta and range(nsamples)
columns ['logZ', 'd_G', 'DK_L', 'logL_P']
columns ['logZ', 'd_G', 'D_KL', 'logL_P']
"""
logw = self.logw(nsamples, beta)
if nsamples is None and beta is None:
Expand All @@ -861,6 +868,26 @@ def stats(self, nsamples=None, beta=None):
samples.set_label('d_G', r'$d_\mathrm{G}$')

samples.label = self.label

if norm is not None:
samples['Delta_logZ'] = samples['logZ'] - norm['logZ']
samples.set_label('Delta_logZ',
r"$\Delta\ln\mathcal{Z}$")

samples['Delta_D_KL'] = samples['D_KL'] - norm['D_KL']
samples.set_label('Delta_D_KL',
r"$\Delta\mathcal{D}_\mathrm{KL}$")

samples['Delta_logL_P'] = samples['logL_P'] - norm['logL_P']
samples.set_label(
'Delta_logL_P',
r"$\Delta\langle\ln\mathcal{L}\rangle_\mathcal{P}$"
)

samples['Delta_d_G'] = samples['d_G'] - norm['d_G']
samples.set_label('Delta_d_G',
r"$\Delta d_\mathrm{G}$")

return samples

def logX(self, nsamples=None):
Expand Down Expand Up @@ -1302,15 +1329,17 @@ def recompute(self, logL_birth=None, inplace=False):
n_bad = invalid.sum()
n_equal = (samples.logL == samples.logL_birth).sum()
if n_bad:
warnings.warn("%i out of %i samples have logL <= logL_birth,"
"\n%i of which have logL == logL_birth."
"\nThis may just indicate numerical rounding "
"errors at the peak of the likelihood, but "
"further investigation of the chains files is "
"recommended."
"\nDropping the invalid samples." %
(n_bad, len(samples), n_equal),
RuntimeWarning)
n_inf = ((samples.logL == samples.logL_birth) &
(samples.logL == -np.inf)).sum()
if n_bad > n_inf:
warnings.warn(
"%i out of %i samples have logL <= logL_birth,\n"
"%i of which have logL == logL_birth.\n"
"This may just indicate numerical rounding errors at "
"the peak of the likelihood, but further "
"investigation of the chains files is recommended.\n"
"Dropping the invalid samples."
% (n_bad, len(samples), n_equal), RuntimeWarning)
samples = samples[~invalid].reset_index(drop=True)

samples.sort_values('logL', inplace=True)
Expand Down
55 changes: 55 additions & 0 deletions tests/test_samples.py
Original file line number Diff line number Diff line change
Expand Up @@ -946,39 +946,93 @@ def test_stats():
beta = [0., 0.5, 1.]

vals = ['logZ', 'D_KL', 'logL_P', 'd_G']
delta_vals = ['Delta_logZ', 'Delta_D_KL', 'Delta_logL_P', 'Delta_d_G']

labels = [r'$\ln\mathcal{Z}$',
r'$\mathcal{D}_\mathrm{KL}$',
r'$\langle\ln\mathcal{L}\rangle_\mathcal{P}$',
r'$d_\mathrm{G}$']
delta_labels = [r'$\Delta\ln\mathcal{Z}$',
r'$\Delta\mathcal{D}_\mathrm{KL}$',
r'$\Delta\langle\ln\mathcal{L}\rangle_\mathcal{P}$',
r'$\Delta d_\mathrm{G}$']

stats = pc.stats()
assert isinstance(stats, WeightedLabelledSeries)
assert_array_equal(stats.drop_labels().index, vals)
assert_array_equal(stats.get_labels(), labels)

stats = pc.stats(norm=pc.stats())
assert isinstance(stats, WeightedLabelledSeries)
assert_array_equal(stats.drop_labels().index, vals + delta_vals)
assert_array_equal(stats.get_labels(), labels + delta_labels)

stats = pc.stats(nsamples=nsamples)
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals)
assert_array_equal(stats.get_labels(), labels)
assert stats.index.name == 'samples'
assert_array_equal(stats.index, range(nsamples))

stats = pc.stats(nsamples=nsamples, norm=pc.stats())
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals + delta_vals)
assert_array_equal(stats.get_labels(), labels + delta_labels)
assert stats.index.name == 'samples'
assert_array_equal(stats.index, range(nsamples))

stats = pc.stats(nsamples=nsamples, norm=pc.stats(nsamples=nsamples))
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals + delta_vals)
assert_array_equal(stats.get_labels(), labels + delta_labels)
assert stats.index.name == 'samples'
assert_array_equal(stats.index, range(nsamples))

stats = pc.stats(beta=beta)
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals)
assert_array_equal(stats.get_labels(), labels)
assert stats.index.name == 'beta'
assert_array_equal(stats.index, beta)

stats = pc.stats(beta=beta, norm=pc.stats())
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals + delta_vals)
assert_array_equal(stats.get_labels(), labels + delta_labels)
assert stats.index.name == 'beta'
assert_array_equal(stats.index, beta)

stats = pc.stats(beta=beta, norm=pc.stats(beta=beta))
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals + delta_vals)
assert_array_equal(stats.get_labels(), labels + delta_labels)
assert stats.index.name == 'beta'
assert_array_equal(stats.index, beta)

stats = pc.stats(nsamples=nsamples, beta=beta)
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals)
assert_array_equal(stats.get_labels(), labels)
assert stats.index.names == ['beta', 'samples']
assert stats.index.levshape == (len(beta), nsamples)

stats = pc.stats(nsamples=nsamples, beta=beta, norm=pc.stats())
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals + delta_vals)
assert_array_equal(stats.get_labels(), labels + delta_labels)
assert stats.index.names == ['beta', 'samples']
assert stats.index.levshape == (len(beta), nsamples)

stats = pc.stats(nsamples=nsamples, beta=beta,
norm=pc.stats(nsamples=nsamples, beta=beta))
assert isinstance(stats, WeightedLabelledDataFrame)
assert_array_equal(stats.drop_labels().columns, vals + delta_vals)
assert_array_equal(stats.get_labels(), labels + delta_labels)
assert stats.index.names == ['beta', 'samples']
assert stats.index.levshape == (len(beta), nsamples)

for beta in [1., 0., 0.5]:
np.random.seed(42)
pc.beta = beta
n = 1000
PC = pc.stats(n, beta)
Expand Down Expand Up @@ -1133,6 +1187,7 @@ def test_beta():
def test_beta_with_logL_infinities():
ns = read_chains("./tests/example_data/pc")
ns.loc[:10, ('logL', r'$\ln\mathcal{L}$')] = -np.inf
ns.loc[1000, ('logL', r'$\ln\mathcal{L}$')] = -np.inf
with pytest.warns(RuntimeWarning):
ns.recompute(inplace=True)
assert (ns.logL == -np.inf).sum() == 0
Expand Down

0 comments on commit 5e97567

Please sign in to comment.