Skip to content

hacersule/BTK1

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Diabetes Prediction Using Machine Learning

This project focuses on predicting diabetes using multiple machine learning classification algorithms. The dataset is analyzed, cleaned, visualized, and modeled using classical ML techniques.


πŸ“Š Dataset

  • Source: Pima Indians Diabetes Dataset
  • Features include:
    • Pregnancies
    • Glucose
    • BloodPressure
    • SkinThickness
    • Insulin
    • BMI
    • DiabetesPedigreeFunction
    • Age
  • Target variable: Outcome (0: Non-diabetic, 1: Diabetic)

πŸ” Exploratory Data Analysis (EDA)

  • Dataset overview (info, describe)
  • Pairwise feature relationships (Pairplot)
  • Correlation heatmap
  • Outlier detection using IQR method

🧹 Data Preprocessing

  • Outlier removal with Interquartile Range (IQR)
  • Train-test split (75% train / 25% test)
  • Feature scaling using StandardScaler

πŸ€– Machine Learning Models Used

  • Logistic Regression
  • Decision Tree
  • K-Nearest Neighbors (KNN)
  • Naive Bayes
  • Support Vector Machine (SVM)
  • AdaBoost
  • Gradient Boosting
  • Random Forest

Model performance evaluated using 10-Fold Cross Validation.


βš™οΈ Hyperparameter Optimization

  • GridSearchCV applied on Decision Tree
  • Best parameters selected using 5-Fold CV

πŸ“ˆ Model Evaluation

  • Confusion Matrix
  • Classification Report (Precision, Recall, F1-score)
  • Accuracy comparison using boxplots

πŸ§ͺ Prediction on New Data

The trained model can predict diabetes for new patient data:

new_data = [[6,149,72,35,0,34.6,0.627,51]]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages