-
Notifications
You must be signed in to change notification settings - Fork 354
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Add notebook helper functions to display and visualize evaluati…
…on results in an IPython environment PiperOrigin-RevId: 724478843
- Loading branch information
1 parent
0abe0b7
commit b78d1bd
Showing
2 changed files
with
251 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,247 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
# Copyright 2025 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
"""Python functions which run only within a Jupyter or Colab notebook.""" | ||
|
||
import random | ||
import string | ||
import sys | ||
from typing import List, Optional, Tuple | ||
|
||
from vertexai.preview.evaluation import _base as eval_base | ||
from vertexai.preview.evaluation import constants | ||
import pandas as pd | ||
|
||
|
||
_MARKDOWN_H2 = "##" | ||
_MARKDOWN_H3 = "###" | ||
_DEFAULT_COLUMNS_TO_DISPLAY = [ | ||
constants.Dataset.MODEL_RESPONSE_COLUMN, | ||
constants.Dataset.BASELINE_MODEL_RESPONSE_COLUMN, | ||
constants.Dataset.PROMPT_COLUMN, | ||
constants.MetricResult.ROW_COUNT_KEY, | ||
] | ||
_DEFAULT_RADAR_RANGE = (0, 5) | ||
|
||
|
||
def _get_ipython_shell_name() -> str: | ||
if "IPython" in sys.modules: | ||
# pylint: disable=g-import-not-at-top, g-importing-member | ||
from IPython import get_ipython | ||
|
||
return get_ipython().__class__.__name__ | ||
return "" | ||
|
||
|
||
def is_ipython_available() -> bool: | ||
return _get_ipython_shell_name() | ||
|
||
|
||
def _filter_df( | ||
df: pd.DataFrame, substrings: Optional[List[str]] = None | ||
) -> pd.DataFrame: | ||
"""Filters a DataFrame to include only columns containing the given substrings.""" | ||
if substrings is None: | ||
return df | ||
|
||
return df.copy().filter( | ||
[ | ||
column_name | ||
for column_name in df.columns | ||
if any(substring in column_name for substring in substrings) | ||
] | ||
) | ||
|
||
|
||
def display_eval_result( | ||
eval_result: "eval_base.EvalResult", | ||
title: Optional[str] = None, | ||
metrics: Optional[List[str]] = None, | ||
) -> None: | ||
"""Displays evaluation results in a notebook using IPython.display. | ||
Args: | ||
eval_result: An object containing evaluation results with | ||
`summary_metrics` and `metrics_table` attributes. | ||
title: A string title to display above the results. | ||
metrics: A list of metric name substrings to filter displayed columns. If | ||
provided, only metrics whose names contain any of these strings will be | ||
displayed. | ||
""" | ||
if not is_ipython_available(): | ||
return | ||
# pylint: disable=g-import-not-at-top, g-importing-member | ||
from IPython.display import display | ||
from IPython.display import Markdown | ||
|
||
summary_metrics, metrics_table = ( | ||
eval_result.summary_metrics, | ||
eval_result.metrics_table, | ||
) | ||
|
||
summary_metrics_df = pd.DataFrame.from_dict(summary_metrics, orient="index").T | ||
|
||
if metrics: | ||
columns_to_keep = metrics + _DEFAULT_COLUMNS_TO_DISPLAY | ||
summary_metrics_df = _filter_df(summary_metrics_df, columns_to_keep) | ||
metrics_table = _filter_df(metrics_table, columns_to_keep) | ||
|
||
# Display the title in Markdown. | ||
if title: | ||
display(Markdown(f"{_MARKDOWN_H2} {title}")) | ||
|
||
# Display the summary metrics. | ||
display(Markdown(f"{_MARKDOWN_H3} Summary Metrics")) | ||
display(summary_metrics_df) | ||
|
||
# Display the metrics table. | ||
display(Markdown(f"{_MARKDOWN_H3} Row-based Metrics")) | ||
display(metrics_table) | ||
|
||
|
||
def display_explanations( | ||
eval_result: "eval_base.EvalResult", | ||
num: int = 1, | ||
metrics: Optional[List[str]] = None, | ||
) -> None: | ||
"""Displays the explanations in a notebook using IPython.display. | ||
Args: | ||
eval_result: An object containing evaluation results. It is expected to | ||
have attributes `summary_metrics` and `metrics_table`. | ||
num: The number of row samples to display. Defaults to 1. If the number of | ||
rows is less than `num`, all rows will be displayed. | ||
metrics: A list of metric name substrings to filter displayed columns. If | ||
provided, only metrics whose names contain any of these strings will be | ||
displayed. | ||
""" | ||
if not is_ipython_available(): | ||
return | ||
# pylint: disable=g-import-not-at-top, g-importing-member | ||
from IPython.display import display | ||
from IPython.display import HTML | ||
|
||
style = "white-space: pre-wrap; width: 1500px; overflow-x: auto;" | ||
metrics_table = eval_result.metrics_table | ||
|
||
if num < 1: | ||
raise ValueError("Num must be greater than 0.") | ||
num = min(num, len(metrics_table)) | ||
|
||
df = metrics_table.sample(n=num) | ||
|
||
if metrics: | ||
columns_to_keep = metrics + _DEFAULT_COLUMNS_TO_DISPLAY | ||
df = _filter_df(df, columns_to_keep) | ||
|
||
for _, row in df.iterrows(): | ||
for col in df.columns: | ||
display(HTML(f"<div style='{style}'><h4>{col}:</h4>{row[col]}</div>")) | ||
display(HTML("<hr>")) | ||
|
||
|
||
def display_radar_plot( | ||
eval_results_with_title: List[Tuple[str, "eval_base.EvalResult"]], | ||
metrics: List[str], | ||
radar_range: Tuple[float, float] = _DEFAULT_RADAR_RANGE, | ||
) -> None: | ||
"""Plots a radar plot comparing evaluation results. | ||
Args: | ||
eval_results_with_title: List of (title, eval_result) tuples. | ||
metrics: A list of metrics whose mean values will be plotted. | ||
radar_range: Range of the radar plot axes. | ||
""" | ||
# pylint: disable=g-import-not-at-top | ||
try: | ||
import plotly.graph_objects as go | ||
except ImportError as exc: | ||
raise ImportError( | ||
'`plotly` is not installed. Please install using "!pip install plotly"' | ||
) from exc | ||
|
||
fig = go.Figure() | ||
for title, eval_result in eval_results_with_title: | ||
summary_metrics = eval_result.summary_metrics | ||
if metrics: | ||
summary_metrics = { | ||
key.replace("/mean", ""): summary_metrics[key] | ||
for key in summary_metrics | ||
if any(selected_metric + "/mean" in key for selected_metric in metrics) | ||
} | ||
fig.add_trace( | ||
go.Scatterpolar( | ||
r=list(summary_metrics.values()), | ||
theta=list(summary_metrics.keys()), | ||
fill="toself", | ||
name=title, | ||
) | ||
) | ||
fig.update_layout( | ||
polar=dict(radialaxis=dict(visible=True, range=radar_range)), | ||
showlegend=True, | ||
) | ||
fig.show() | ||
|
||
|
||
def display_bar_plot( | ||
eval_results_with_title: List[Tuple[str, "eval_base.EvalResult"]], | ||
metrics: List[str], | ||
) -> None: | ||
"""Plots a bar plot comparing evaluation results. | ||
Args: | ||
eval_results_with_title: List of (title, eval_result) tuples. | ||
metrics: A list of metrics whose mean values will be plotted. | ||
""" | ||
|
||
# pylint: disable=g-import-not-at-top | ||
try: | ||
import plotly.graph_objects as go | ||
except ImportError as exc: | ||
raise ImportError( | ||
'`plotly` is not installed. Please install using "!pip install plotly"' | ||
) from exc | ||
|
||
data = [] | ||
|
||
for title, eval_result in eval_results_with_title: | ||
summary_metrics = eval_result.summary_metrics | ||
mean_summary_metrics = [f"{metric}/mean" for metric in metrics] | ||
updated_summary_metrics = [] | ||
if metrics: | ||
for k, v in summary_metrics.items(): | ||
if k in mean_summary_metrics: | ||
updated_summary_metrics.append((k, v)) | ||
summary_metrics = dict(updated_summary_metrics) | ||
|
||
data.append( | ||
go.Bar( | ||
x=list(summary_metrics.keys()), | ||
y=list(summary_metrics.values()), | ||
name=title, | ||
) | ||
) | ||
|
||
fig = go.Figure(data=data) | ||
|
||
fig.update_layout(barmode="group", showlegend=True) | ||
fig.show() | ||
|
||
|
||
def generate_uuid(length: int = 8) -> str: | ||
"""Generates a uuid of a specified length (default=8).""" | ||
return "".join(random.choices(string.ascii_lowercase + string.digits, k=length)) |