-
Notifications
You must be signed in to change notification settings - Fork 660
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
42 changed files
with
3,126 additions
and
1,962 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,235 @@ | ||
# Copyright 2024 The Flax Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# %% | ||
from functools import partial | ||
import jax | ||
import jax.numpy as jnp | ||
from flax import nnx | ||
import optax | ||
import numpy as np | ||
from einop import einop | ||
from time import time | ||
from tqdm import tqdm | ||
|
||
from flax import nnx | ||
|
||
from absl import flags | ||
from absl import app | ||
|
||
FLAGS = flags.FLAGS | ||
flags.DEFINE_enum( | ||
'mode', 'all', ['all', 'nnx', 'jax'], 'Mode to run the script in' | ||
) | ||
flags.DEFINE_integer('total_steps', 10_000, 'Total number of training steps') | ||
flags.DEFINE_integer('batch_size', 32, 'Batch size') | ||
flags.DEFINE_integer('width', 32, 'Hidden layer size') | ||
flags.DEFINE_integer('depth', 4, 'Depth of the model') | ||
|
||
|
||
class MlpBlock(nnx.Module): | ||
def __init__(self, din: int, mlp_dim: int, rngs: nnx.Rngs): | ||
self.din, self.mlp_dim = din, mlp_dim | ||
self.linear_in = nnx.Linear(din, mlp_dim, rngs=rngs) | ||
self.linear_out = nnx.Linear(mlp_dim, din, rngs=rngs) | ||
|
||
def __call__(self, x): | ||
return self.linear_out(nnx.gelu(self.linear_in(x))) | ||
|
||
|
||
class MixerBlock(nnx.Module): | ||
def __init__( | ||
self, | ||
tokens_mlp_dim: int, | ||
channels_mlp_dim: int, | ||
hidden_dim: int, | ||
rngs: nnx.Rngs, | ||
): | ||
self.tokens_mlp_dim = tokens_mlp_dim | ||
self.channels_mlp_dim = channels_mlp_dim | ||
self.hidden_dim = hidden_dim | ||
self.token_mixing = MlpBlock(tokens_mlp_dim, hidden_dim, rngs=rngs) | ||
self.channel_mixing = MlpBlock(channels_mlp_dim, hidden_dim, rngs=rngs) | ||
self.ln1 = nnx.LayerNorm(channels_mlp_dim, rngs=rngs) | ||
self.ln2 = nnx.LayerNorm(channels_mlp_dim, rngs=rngs) | ||
|
||
def __call__(self, x): | ||
y = self.ln1(x) | ||
y = y.swapaxes(1, 2) | ||
y = self.token_mixing(y) | ||
y = y.swapaxes(1, 2) | ||
x = x + y | ||
y = self.ln2(x) | ||
return x + self.channel_mixing(y) | ||
|
||
|
||
class MlpMixer(nnx.Module): | ||
def __init__( | ||
self, | ||
din: int, | ||
kernel_size: tuple[int, int], | ||
strides: tuple[int, int], | ||
num_blocks: int, | ||
hidden_dim: int, | ||
tokens_mlp_dim: int, | ||
channels_mlp_dim: int, | ||
rngs: nnx.Rngs, | ||
): | ||
self.din = din | ||
self.kernel_size = kernel_size | ||
self.num_blocks = num_blocks | ||
self.hidden_dim = hidden_dim | ||
self.tokens_mlp_dim = tokens_mlp_dim | ||
self.channels_mlp_dim = channels_mlp_dim | ||
self.stem = nnx.Conv( | ||
din + 1, | ||
channels_mlp_dim, | ||
kernel_size=kernel_size, | ||
strides=strides, | ||
rngs=rngs, | ||
) | ||
self.blocks = [ | ||
MixerBlock(tokens_mlp_dim, channels_mlp_dim, hidden_dim, rngs=rngs) | ||
for _ in range(num_blocks) | ||
] | ||
self.pre_head_layer_norm = nnx.LayerNorm(channels_mlp_dim, rngs=rngs) | ||
self.conv_t = nnx.ConvTranspose( | ||
channels_mlp_dim, din, kernel_size=kernel_size, strides=strides, rngs=rngs | ||
) | ||
|
||
def __call__(self, *, x, t): | ||
# add time feature to input | ||
t = einop(t, 'n -> n h w c', h=x.shape[1], w=x.shape[2], c=1) | ||
x = jnp.concatenate([x, t], axis=-1) | ||
# create patches | ||
x = self.stem(x) | ||
h, w = x.shape[1], x.shape[2] | ||
x = einop(x, 'n h w c -> n (h w) c') | ||
# apply blocks | ||
for block in self.blocks: | ||
x = block(x) | ||
x = self.pre_head_layer_norm(x) | ||
# recreate image | ||
x = einop(x, 'n (h w) c -> n h w c', h=h, w=w) | ||
x = self.conv_t(x) | ||
return x | ||
|
||
|
||
def main(argv): | ||
print(argv) | ||
mode: str = FLAGS.mode | ||
total_steps: int = FLAGS.total_steps | ||
batch_size: int = FLAGS.batch_size | ||
width: int = FLAGS.width | ||
depth: int = FLAGS.depth | ||
|
||
print(f'{mode=}, {total_steps=}, {batch_size=}, {width=}') | ||
|
||
X = np.random.uniform(size=(batch_size, 28, 28, 1)) | ||
|
||
if mode == 'nnx' or mode == 'all': | ||
rngs = nnx.Rngs(0) | ||
flow = MlpMixer( | ||
din=1, | ||
kernel_size=(2, 2), | ||
strides=(2, 2), | ||
num_blocks=4, | ||
hidden_dim=512, | ||
tokens_mlp_dim=196, | ||
channels_mlp_dim=512, | ||
rngs=rngs, | ||
) | ||
optimizer = nnx.Optimizer(flow, tx=optax.adamw(1e-4)) | ||
t0 = time() | ||
|
||
mse = lambda a, b: jnp.mean((a - b) ** 2) | ||
|
||
@nnx.jit(donate_argnums=(0, 1, 2)) | ||
def train_step_nnx(flow, optimizer, rngs, x_1): | ||
print('JITTING NNX') | ||
x_0 = jax.random.normal(rngs(), x_1.shape) | ||
t = jax.random.uniform(rngs(), (len(x_1),)) | ||
|
||
x_t = jax.vmap(lambda x_0, x_1, t: (1 - t) * x_0 + t * x_1)(x_0, x_1, t) | ||
dx_t = x_1 - x_0 | ||
|
||
loss, grads = nnx.value_and_grad( | ||
lambda flow: mse(flow(x=x_t, t=t), dx_t) | ||
)(flow) | ||
optimizer.update(grads) | ||
return loss | ||
|
||
losses = [] | ||
t0 = time() | ||
for step in tqdm(range(total_steps), desc='NNX'): | ||
loss = train_step_nnx(flow, optimizer, rngs, X) | ||
losses.append(loss) | ||
|
||
total_time = time() - t0 | ||
print('### NNX ###') | ||
print(f'final loss: {losses[-1]}') | ||
print('total time:', total_time) | ||
print(f'time per step: {total_time / total_steps * 1e6:.2f} µs') | ||
|
||
if mode == 'jax' or mode == 'all': | ||
rngs = nnx.Rngs(0) | ||
flow = MlpMixer( | ||
din=1, | ||
kernel_size=(2, 2), | ||
strides=(2, 2), | ||
num_blocks=depth, | ||
hidden_dim=width, | ||
tokens_mlp_dim=196, | ||
channels_mlp_dim=width, | ||
rngs=rngs, | ||
) | ||
optimizer = nnx.Optimizer(flow, tx=optax.adamw(1e-4)) | ||
graphdef, state = nnx.split((flow, optimizer, rngs)) | ||
t0 = time() | ||
|
||
mse = lambda a, b: jnp.mean((a - b) ** 2) | ||
|
||
@partial(nnx.jit, donate_argnums=0) | ||
def train_step_jax(state, x_1): | ||
print('JITTING JAX') | ||
flow, optimizer, rngs = nnx.merge(graphdef, state) | ||
x_0 = jax.random.normal(rngs(), x_1.shape) | ||
t = jax.random.uniform(rngs(), (len(x_1),)) | ||
|
||
x_t = jax.vmap(lambda x_0, x_1, t: (1 - t) * x_0 + t * x_1)(x_0, x_1, t) | ||
dx_t = x_1 - x_0 | ||
|
||
loss, grads = nnx.value_and_grad( | ||
lambda flow: mse(flow(x=x_t, t=t), dx_t) | ||
)(flow) | ||
optimizer.update(grads) | ||
state = nnx.state((flow, optimizer, rngs)) | ||
return loss, state | ||
|
||
losses = [] | ||
t0 = time() | ||
for step in tqdm(range(total_steps), desc='JAX'): | ||
loss, state = train_step_jax(state, X) | ||
losses.append(loss) | ||
|
||
nnx.update((flow, optimizer, rngs), state) | ||
total_time = time() - t0 | ||
print('### JAX ###') | ||
print(f'final loss: {losses[-1]}') | ||
print('total time:', total_time) | ||
print(f'time per step: {total_time / total_steps * 1e6:.2f} µs') | ||
|
||
|
||
if __name__ == '__main__': | ||
app.run(main) |
Oops, something went wrong.