-
Notifications
You must be signed in to change notification settings - Fork 660
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
395 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,395 @@ | ||
# Copyright 2024 The Flax Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import functools | ||
import inspect | ||
import io | ||
import typing as tp | ||
from itertools import groupby | ||
from types import MappingProxyType | ||
|
||
import jax | ||
import rich.console | ||
import rich.table | ||
import rich.text | ||
import yaml | ||
import jax.numpy as jnp | ||
|
||
from flax import nnx | ||
from flax import typing | ||
from flax.nnx import graph, rnglib, statelib, variablelib | ||
|
||
try: | ||
from IPython import get_ipython | ||
|
||
in_ipython = get_ipython() is not None | ||
except ImportError: | ||
in_ipython = False | ||
|
||
|
||
class ObjectInfo(tp.NamedTuple): | ||
path: statelib.PathParts | ||
stats: dict[type[variablelib.Variable], typing.SizeBytes] | ||
|
||
|
||
def _collect_stats( | ||
path: statelib.PathParts, | ||
node: tp.Any, | ||
node_stats: dict[int, ObjectInfo], | ||
object_types: set[type], | ||
): | ||
if not graph.is_node(node) and not isinstance(node, variablelib.Variable): | ||
raise ValueError(f'Expected a graph node or Variable, got {type(node)!r}.') | ||
|
||
if id(node) in node_stats: | ||
return | ||
|
||
stats: dict[type[variablelib.Variable], typing.SizeBytes] = {} | ||
node_stats[id(node)] = ObjectInfo(path, stats) | ||
|
||
if isinstance(node, nnx.Object): | ||
node._nnx_tabulate_id = id(node) # type: ignore | ||
object_types.add(type(node)) | ||
|
||
if isinstance(node, variablelib.Variable): | ||
var_type = type(node) | ||
if issubclass(var_type, nnx.RngState): | ||
var_type = nnx.RngState | ||
size_bytes = typing.value_stats(node.value) | ||
if size_bytes: | ||
stats[var_type] = size_bytes | ||
|
||
else: | ||
node_dict = graph.get_node_impl(node).node_dict(node) | ||
for key, value in node_dict.items(): | ||
if id(value) in node_stats: | ||
continue | ||
if graph.is_node(value) or isinstance(value, variablelib.Variable): | ||
_collect_stats((*path, key), value, node_stats, object_types) | ||
child_info = node_stats[id(value)] | ||
for var_type, size_bytes in child_info.stats.items(): | ||
if var_type in stats: | ||
stats[var_type] += size_bytes | ||
else: | ||
stats[var_type] = size_bytes | ||
|
||
|
||
class CallInfo(tp.NamedTuple): | ||
object_id: int | ||
inputs: tp.Any | ||
outputs: tp.Any | ||
|
||
|
||
def get_method_wrapper(method: tp.Callable) -> tp.Callable: | ||
@functools.wraps(method) | ||
def method_wrapper(obj, *args, **kwargs): | ||
return method(obj, *args, **kwargs) | ||
|
||
return method_wrapper | ||
|
||
|
||
def _call_obj(object_types: set[type], obj, *args, **kwargs): | ||
original_methods: dict[type, dict[str, tp.Callable]] = {} | ||
for obj_type in object_types: | ||
methods: dict[str, tp.Callable] = {} | ||
for name, method in inspect.getmembers(obj_type, inspect.isfunction): | ||
if not name.startswith('_') or name == '__call__': | ||
methods[name] = method | ||
method_wrapper = get_method_wrapper(method) | ||
setattr(obj_type, name, method_wrapper) | ||
|
||
original_methods[obj_type] = methods | ||
|
||
|
||
def tabulate( | ||
obj, | ||
depth: int | None = None, | ||
table_kwargs: tp.Mapping[str, tp.Any] = MappingProxyType({}), | ||
column_kwargs: tp.Mapping[str, tp.Any] = MappingProxyType({}), | ||
console_kwargs: tp.Mapping[str, tp.Any] = MappingProxyType({}), | ||
) -> str: | ||
"""Creates a summary of the graph object represented as a table. | ||
The table summarizes the object's state and metadata. The table is | ||
structured as follows: | ||
- The first column represents the path of the object in the graph. | ||
- The second column represents the type of the object. | ||
- The following columns provide information about the object's state, | ||
grouped by Variable types. | ||
Example: | ||
>>> from flax import nnx | ||
... | ||
>>> class Block(nnx.Module): | ||
... def __init__(self, din, dout, rngs: nnx.Rngs): | ||
... self.linear = nnx.Linear(din, dout, rngs=rngs) | ||
... self.bn = nnx.BatchNorm(dout, rngs=rngs) | ||
... self.dropout = nnx.Dropout(0.2, rngs=rngs) | ||
... | ||
... def __call__(self, x): | ||
... return nnx.relu(self.dropout(self.bn(self.linear(x)))) | ||
... | ||
>>> class Foo(nnx.Module): | ||
... def __init__(self, rngs: nnx.Rngs): | ||
... self.block1 = Block(32, 128, rngs=rngs) | ||
... self.block2 = Block(128, 10, rngs=rngs) | ||
... | ||
... def __call__(self, x): | ||
... return self.block2(self.block1(x)) | ||
... | ||
>>> foo = Foo(nnx.Rngs(0)) | ||
>>> # print(nnx.tabulate(foo)) | ||
Foo Summary | ||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓ | ||
┃ path ┃ type ┃ BatchStat ┃ Param ┃ RngState ┃ | ||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩ | ||
│ block1/bn │ BatchNorm │ mean: float32[128] │ bias: float32[128] │ │ | ||
│ │ │ var: float32[128] │ scale: float32[128] │ │ | ||
│ │ │ │ │ │ | ||
│ │ │ 256 (1.0 KB) │ 256 (1.0 KB) │ │ | ||
├─────────────────────────────┼───────────┼────────────────────┼─────────────────────────┼─────────────────────┤ | ||
│ block1/dropout/rngs/default │ RngStream │ │ │ count: │ | ||
│ │ │ │ │ value: uint32[] │ | ||
│ │ │ │ │ tag: default │ | ||
│ │ │ │ │ key: │ | ||
│ │ │ │ │ value: key<fry>[] │ | ||
│ │ │ │ │ tag: default │ | ||
│ │ │ │ │ │ | ||
│ │ │ │ │ 2 (12 B) │ | ||
├─────────────────────────────┼───────────┼────────────────────┼─────────────────────────┼─────────────────────┤ | ||
│ block1/linear │ Linear │ │ bias: float32[128] │ │ | ||
│ │ │ │ kernel: float32[32,128] │ │ | ||
│ │ │ │ │ │ | ||
│ │ │ │ 4,224 (16.9 KB) │ │ | ||
├─────────────────────────────┼───────────┼────────────────────┼─────────────────────────┼─────────────────────┤ | ||
│ block2/bn │ BatchNorm │ mean: float32[10] │ bias: float32[10] │ │ | ||
│ │ │ var: float32[10] │ scale: float32[10] │ │ | ||
│ │ │ │ │ │ | ||
│ │ │ 20 (80 B) │ 20 (80 B) │ │ | ||
├─────────────────────────────┼───────────┼────────────────────┼─────────────────────────┼─────────────────────┤ | ||
│ block2/linear │ Linear │ │ bias: float32[10] │ │ | ||
│ │ │ │ kernel: float32[128,10] │ │ | ||
│ │ │ │ │ │ | ||
│ │ │ │ 1,290 (5.2 KB) │ │ | ||
├─────────────────────────────┼───────────┼────────────────────┼─────────────────────────┼─────────────────────┤ | ||
│ │ Total │ 276 (1.1 KB) │ 5,790 (23.2 KB) │ 2 (12 B) │ | ||
└─────────────────────────────┴───────────┴────────────────────┴─────────────────────────┴─────────────────────┘ | ||
Total Parameters: 6,068 (24.3 KB) | ||
Note that ``block2/dropout`` is not shown in the table because it shares the | ||
same ``RngState`` with ``block1/dropout``. | ||
Args: | ||
obj: A object to summarize. It can a pytree or a graph objects | ||
such as nnx.Module or nnx.Optimizer. | ||
depth: The depth of the table. | ||
table_kwargs: An optional dictionary with additional keyword arguments | ||
that are passed to ``rich.table.Table`` constructor. | ||
column_kwargs: An optional dictionary with additional keyword arguments | ||
that are passed to ``rich.table.Table.add_column`` when adding columns to | ||
the table. | ||
console_kwargs: An optional dictionary with additional keyword arguments | ||
that are passed to `rich.console.Console` when rendering the table. | ||
Default arguments are ``'force_terminal': True``, and ``'force_jupyter'`` | ||
is set to ``True`` if the code is running in a Jupyter notebook, otherwise | ||
it is set to ``False``. | ||
Returns: | ||
A string summarizing the object. | ||
""" | ||
_console_kwargs = {'force_terminal': True, 'force_jupyter': in_ipython} | ||
_console_kwargs.update(console_kwargs) | ||
state = graph.state(obj) | ||
graph_map = dict(graph.iter_graph(obj)) | ||
flat_state = sorted(state.flat_state()) | ||
|
||
def key_fn( | ||
path_state: tuple[graph.PathParts, variablelib.VariableState[tp.Any]], | ||
): | ||
path, _ = path_state | ||
if depth is None or len(path) <= depth: | ||
return path[:-1] | ||
else: | ||
return path[:depth] | ||
|
||
rows = groupby(flat_state, key_fn) | ||
table = sorted((path, list(flat_states)) for path, flat_states in rows) | ||
|
||
state_types_set = {variable_state.type for _, variable_state in flat_state} | ||
# replace RngKey and RngCount with RngState | ||
if rnglib.RngKey in state_types_set: | ||
state_types_set.remove(rnglib.RngKey) | ||
state_types_set.add(rnglib.RngState) | ||
if rnglib.RngCount in state_types_set: | ||
state_types_set.remove(rnglib.RngCount) | ||
state_types_set.add(rnglib.RngState) | ||
# sort based on MRO | ||
state_types = _sort_variable_types(state_types_set) | ||
|
||
rich_table = rich.table.Table( | ||
show_header=True, | ||
show_lines=True, | ||
show_footer=True, | ||
title=f'{type(obj).__name__} Summary', | ||
**table_kwargs, | ||
) | ||
|
||
rich_table.add_column('path', **column_kwargs) | ||
rich_table.add_column('type', **column_kwargs) | ||
|
||
for state_type in state_types: | ||
rich_table.add_column(state_type.__name__, **column_kwargs) | ||
|
||
for key_path, row_states in table: | ||
row: list[str] = [] | ||
node = graph_map[key_path] | ||
type_state_groups = variablelib.split_flat_state(row_states, state_types) | ||
path_str = '/'.join(map(str, key_path)) | ||
node_type = type(node).__name__ | ||
row.extend([path_str, node_type]) | ||
|
||
for state_type, type_path_and_states in zip(state_types, type_state_groups): | ||
attributes = {} | ||
for state_path, variable_state in type_path_and_states: | ||
if len(state_path) == len(key_path) + 1: | ||
name = str(state_path[-1]) | ||
value = variable_state.value | ||
value_repr = _render_array(value) if _has_shape_dtype(value) else '' | ||
metadata = variable_state.get_metadata() | ||
|
||
if metadata: | ||
attributes[name] = { | ||
'value': value_repr, | ||
**metadata, | ||
} | ||
elif value_repr: | ||
attributes[name] = value_repr | ||
|
||
if attributes: | ||
col_repr = _as_yaml_str(attributes) + '\n\n' | ||
else: | ||
col_repr = '' | ||
|
||
type_states = [state for _, state in type_path_and_states] | ||
size_, bytes_ = _size_and_bytes(type_states) | ||
col_repr += f'[bold]{_size_and_bytes_repr(size_, bytes_)}[/bold]' | ||
row.append(col_repr) | ||
|
||
rich_table.add_row(*row) | ||
|
||
rich_table.columns[1].footer = rich.text.Text.from_markup( | ||
'Total', justify='right' | ||
) | ||
flat_states = variablelib.split_flat_state(flat_state, state_types) | ||
|
||
for i, (state_type, type_path_and_states) in enumerate( | ||
zip(state_types, flat_states) | ||
): | ||
type_states = [state for _, state in type_path_and_states] | ||
size_, bytes_ = _size_and_bytes(type_states) | ||
size_repr = _size_and_bytes_repr(size_, bytes_) | ||
rich_table.columns[i + 2].footer = size_repr | ||
|
||
rich_table.caption_style = 'bold' | ||
rich_table.caption = ( | ||
f'\nTotal Parameters: {_size_and_bytes_repr(*_size_and_bytes(state))}' | ||
) | ||
|
||
return _get_rich_repr(rich_table, _console_kwargs) | ||
|
||
|
||
def _get_rich_repr(obj, console_kwargs): | ||
f = io.StringIO() | ||
console = rich.console.Console(file=f, **console_kwargs) | ||
console.print(obj) | ||
return f.getvalue() | ||
|
||
|
||
def _size_and_bytes(pytree: tp.Any) -> tuple[int, int]: | ||
leaves = jax.tree.leaves(pytree) | ||
size = sum(x.size for x in leaves if hasattr(x, 'size')) | ||
num_bytes = sum( | ||
x.size * x.dtype.itemsize for x in leaves if hasattr(x, 'size') | ||
) | ||
return size, num_bytes | ||
|
||
|
||
def _size_and_bytes_repr(size: int, num_bytes: int) -> str: | ||
if not size: | ||
return '' | ||
bytes_repr = _bytes_repr(num_bytes) | ||
return f'{size:,} [dim]({bytes_repr})[/dim]' | ||
|
||
|
||
def _bytes_repr(num_bytes): | ||
count, units = ( | ||
(f'{num_bytes / 1e9:,.1f}', 'GB') | ||
if num_bytes > 1e9 | ||
else (f'{num_bytes / 1e6:,.1f}', 'MB') | ||
if num_bytes > 1e6 | ||
else (f'{num_bytes / 1e3:,.1f}', 'KB') | ||
if num_bytes > 1e3 | ||
else (f'{num_bytes:,}', 'B') | ||
) | ||
|
||
return f'{count} {units}' | ||
|
||
|
||
def _has_shape_dtype(value): | ||
return hasattr(value, 'shape') and hasattr(value, 'dtype') | ||
|
||
|
||
def _normalize_values(x): | ||
if isinstance(x, type): | ||
return f'type[{x.__name__}]' | ||
else: | ||
return x | ||
|
||
|
||
def _as_yaml_str(value) -> str: | ||
if (hasattr(value, '__len__') and len(value) == 0) or value is None: | ||
return '' | ||
|
||
value = jax.tree.map(_normalize_values, value) | ||
|
||
file = io.StringIO() | ||
yaml.safe_dump( | ||
value, | ||
file, | ||
default_flow_style=False, | ||
indent=2, | ||
sort_keys=False, | ||
explicit_end=False, | ||
) | ||
return file.getvalue().replace('\n...', '').replace("'", '').strip() | ||
|
||
|
||
def _render_array(x): | ||
shape, dtype = jnp.shape(x), jnp.result_type(x) | ||
shape_repr = ','.join(str(x) for x in shape) | ||
return f'[dim]{dtype}[/dim][{shape_repr}]' | ||
|
||
|
||
def _sort_variable_types(types: tp.Iterable[type]) -> list[type]: | ||
def _variable_parents_count(t: type): | ||
return sum(1 for p in t.mro() if issubclass(p, variablelib.Variable)) | ||
|
||
type_sort_key = {t: (-_variable_parents_count(t), t.__name__) for t in types} | ||
return sorted(types, key=lambda t: type_sort_key[t]) |