Recommendation
- Our GAN based work for facial attribute editing - https://github.com/LynnHo/AttGAN-Tensorflow.
Tensorflow implementation of DCGAN, LSGAN, WGAN and WGAN-GP, and we use DCGAN as the network architecture in all experiments.
DCGAN: Unsupervised representation learning with deep convolutional generative adversarial networks
LSGAN: Least squares generative adversarial networks
WGAN: Wasserstein GAN
WGAN-GP: Improved Training of Wasserstein GANs
DCGAN - LSGAN
WGAN - WGAN-GP
DCGAN (left: 25 epoch, right: 50 epoch (slight mode collapse))
LSGAN (left: 25 epoch, right: 50 epoch (heavy mode collapse))
left: WGAN 50 epoch, right: WGAN-GP 50 epoch
left: WGAN 100 epoch, right: WGAN-GP 100 epoch
- tensorflow r1.2
- python 2.7
python train_mnist_dcgan.py
python train_celeba_wgan.py
python train_cartoon_wgan_gp.py
...
tensorboard --logdir=./summaries/celeba_wgan --port=6006
...
- Mnist will be automatically downloaded
- Celeba should be prepared by yourself in ./data/img_align_celeba/*.jpg
- Download the dataset: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AAB06FXaQRUNtjW9ntaoPGvCa?dl=0
- the above links might be inaccessible, the alternative is
- The cartoon-face dataset should be prepared by yourself in ./data/faces
- Download the dataset: https://pan.baidu.com/s/1eSifHcA, password: g5qa
- Reference: https://zhuanlan.zhihu.com/p/24767059