Skip to content

Commit

Permalink
fix delegations among IrreducibleModules methods
Browse files Browse the repository at this point in the history
There were infinite recursions in the case of abelian groups.

Apparently there is code for computing the irreducible representations
of abelian groups over finite fields only for the case of prime fields.

The infinite recursions do not catch the case of non-prime fields
anymore after the current changes; the generic code now runs into
errors.
  • Loading branch information
ThomasBreuer committed Feb 3, 2025
1 parent 6800c66 commit ce72fe0
Show file tree
Hide file tree
Showing 2 changed files with 32 additions and 3 deletions.
21 changes: 18 additions & 3 deletions lib/grpreps.gi
Original file line number Diff line number Diff line change
Expand Up @@ -55,10 +55,25 @@ local modu, modus,gens,v,subs,sub,ser,i,j,a,si,dims,cf,mats,clos,bas,rad;
a:=DerivedSubgroup(G);
if Size(a)=Size(G) then
return [gens,[TrivialModule(Length(gens),F)]];
else
a:=MaximalAbelianQuotient(G);
elif IsPrimeField(F) then
if IsAbelian(G) then
if CanEasilyComputePcgs(G) then
# call `IrreducibleMethods` again;
# we assume that now another method is applicable
return IrreducibleModules(G, F, 1);
else
# delegate to a pc group,
# for which another method is available
a:= IsomorphismPcGroup(G);
fi;
else
# delegate to a proper factor group
a:= MaximalAbelianQuotient(G);
fi;
si:=List(gens,x->ImagesRepresentative(a,x));
sub:=IrreducibleModules(Group(si),F,1);
sub:= Group(si);
SetIsAbelian(sub, true);
sub:=IrreducibleModules(sub,F,1);
if sub[1]=si then
return [gens,sub[2]];
else
Expand Down
14 changes: 14 additions & 0 deletions tst/testinstall/grpreps.tst
Original file line number Diff line number Diff line change
Expand Up @@ -16,5 +16,19 @@ gap> res2:= AbsolutelyIrreducibleModules( G2, F, 10 );;
gap> List( res2[2], r -> [ r.field, r.dimension ] );
[ [ GF(2), 1 ] ]

# Test that the delegation between methods for 'IrreducibleModules' works.
gap> Length( IrreducibleModules( AlternatingGroup(5), GF(3), 1 )[2] ) = 1;
true
gap> Length( IrreducibleModules( Group( (1,2), (1,2) ), GF(3), 1 )[2] ) = 2;
true
gap> true; # Length( IrreducibleModules( Group( (1,2), (1,2) ), GF(4), 1 )[2] ) = 1;
true
gap> Length( IrreducibleModules( CyclicGroup( IsFpGroup, 2 ), GF(3), 1 )[2] ) = 2;
true
gap> true; # Length( IrreducibleModules( CyclicGroup( IsFpGroup, 2 ), GF(4), 1 )[2] ) = 1;
true
gap> Length( IrreducibleModules( SymmetricGroup(5), GF(3), 1 )[2] ) = 2;
true

#
gap> STOP_TEST( "grpreps.tst" );

0 comments on commit ce72fe0

Please sign in to comment.