Skip to content

Commit

Permalink
Update summarization.md (sebastianruder#326)
Browse files Browse the repository at this point in the history
* Update summarization.md

Separate fully extractive summarization models (only do sentence selection) from abstractive and mixed models (has the ability to generate novel words or phrases), making the results more comparable.

* Update summarization.md
  • Loading branch information
nlpyang authored and sebastianruder committed Aug 30, 2019
1 parent 541d5b2 commit b8c0f5e
Showing 1 changed file with 11 additions and 6 deletions.
17 changes: 11 additions & 6 deletions english/summarization.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,28 +47,33 @@ The following models have been evaluated on the non-anonymized version of the da

| Model | ROUGE-1 | ROUGE-2 | ROUGE-L | METEOR | Paper / Source | Code |
| --------------- | :-----: | :-----: | :-----: | :----: | -------------- | ---- |
| BertSum (Liu and Lapata 2019) | 43.85 | 20.34 | 39.90 | - | [Text Summarization with Pretrained Encoders](https://arxiv.org/abs/1908.08345) |[Official](https://github.com/nlpyang/PreSumm) |
| **Extractive Models** | | | | | | |
| BertSumExt (Liu and Lapata 2019) | 43.85 | 20.34 | 39.90 | - | [Text Summarization with Pretrained Encoders](https://arxiv.org/abs/1908.08345) |[Official](https://github.com/nlpyang/PreSumm) |
| HIBERT (Zhang et al., 2019) | 42.37 | 19.95 | 38.83 | - | [HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization](https://arxiv.org/abs/1905.06566) | |
| NeuSUM (Zhou et al., 2018) | 41.59 | 19.01 | 37.98 | - | [Neural Document Summarization by Jointly Learning to Score and Select Sentences](http://aclweb.org/anthology/P18-1061) | [Official](https://github.com/magic282/NeuSum) |
| Latent (Zhang et al., 2018) | 41.05 | 18.77 | 37.54 | - | [Neural Latent Extractive Document Summarization](http://aclweb.org/anthology/D18-1088) | |
| BanditSum (Dong et al., 2018) | 41.5 | 18.7 | 37.6 | - | [BANDITSUM: Extractive Summarization as a Contextual Bandit](https://aclweb.org/anthology/D18-1409) | [Official](https://github.com/yuedongP/BanditSum)|
| REFRESH (Narayan et al., 2018) | 40.0 | 18.2 | 36.6 | - | [Ranking Sentences for Extractive Summarization with Reinforcement Learning](http://aclweb.org/anthology/N18-1158) | [Official](https://github.com/EdinburghNLP/Refresh) |
| Lead-3 baseline (See et al., 2017) | 40.34 | 17.70 | 36.57 | 22.21 | [Get To The Point: Summarization with Pointer-Generator Networks](http://aclweb.org/anthology/P17-1099) | [Official](https://github.com/abisee/pointer-generator) |
| **Abstractive Models & Mixed Models**| | | | | | |
| BertSumExtAbs (Liu and Lapata 2019) | 42.13 | 19.60 | 39.18 | - | [Text Summarization with Pretrained Encoders](https://arxiv.org/abs/1908.08345) |[Official](https://github.com/nlpyang/PreSumm) |
| Two-Stage + RL (Zhang et al., 2019) | 41.71 | 19.49 | 38.79 | - | [Pretraining-Based Natural Language Generation for Text Summarization](https://arxiv.org/abs/1902.09243) | |
| DCA (Celikyilmaz et al., 2018) | 41.69 | 19.47 | 37.92 | - | [Deep Communicating Agents for Abstractive Summarization](http://aclweb.org/anthology/N18-1150) | |
| EditNet (Moroshko et al., 2018) | 41.42 | 19.03 | 38.36 | - | [An Editorial Network for Enhanced Document Summarization](https://arxiv.org/abs/1902.10360) | |
| NeuSUM (Zhou et al., 2018) | 41.59 | 19.01 | 37.98 | - | [Neural Document Summarization by Jointly Learning to Score and Select Sentences](http://aclweb.org/anthology/P18-1061) | [Official](https://github.com/magic282/NeuSum) |
| Latent (Zhang et al., 2018) | 41.05 | 18.77 | 37.54 | - | [Neural Latent Extractive Document Summarization](http://aclweb.org/anthology/D18-1088) | |
| rnn-ext + RL (Chen and Bansal, 2018) | 41.47 | 18.72 | 37.76 | 22.35 | [Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting](http://aclweb.org/anthology/P18-1061) | [Official](https://github.com/chenrocks/fast_abs_rl) |
| BanditSum (Dong et al., 2018) | 41.5 | 18.7 | 37.6 | - | [BANDITSUM: Extractive Summarization as a Contextual Bandit](https://aclweb.org/anthology/D18-1409) | [Official](https://github.com/yuedongP/BanditSum)|
| Bottom-Up Summarization (Gehrmann et al., 2018) | 41.22 | 18.68 | 38.34 | - | [Bottom-Up Abstractive Summarization](https://arxiv.org/abs/1808.10792) | [Official](https://github.com/sebastianGehrmann/bottom-up-summary) |
| REFRESH (Narayan et al., 2018) | 40.0 | 18.2 | 36.6 | - | [Ranking Sentences for Extractive Summarization with Reinforcement Learning](http://aclweb.org/anthology/N18-1158) | [Official](https://github.com/EdinburghNLP/Refresh) |
| (Li et al., 2018a) | 41.54 | 18.18 | 36.47 | - | [Improving Neural Abstractive Document Summarization with Explicit Information Selection Modeling](http://aclweb.org/anthology/D18-1205) | |
| (Li et al., 2018b) | 40.30 | 18.02 | 37.36 | - | [Improving Neural Abstractive Document Summarization with Structural Regularization](http://aclweb.org/anthology/D18-1441) | |
| ROUGESal+Ent RL (Pasunuru and Bansal, 2018) | 40.43 | 18.00 | 37.10 | 20.02 | [Multi-Reward Reinforced Summarization with Saliency and Entailment](http://aclweb.org/anthology/N18-2102) | |
| end2end w/ inconsistency loss (Hsu et al., 2018) | 40.68 | 17.97 | 37.13 | - | [A Unified Model for Extractive and Abstractive Summarization using Inconsistency Loss](http://aclweb.org/anthology/P18-1013) | |
| RL + pg + cbdec (Jiang and Bansal, 2018) | 40.66 | 17.87 | 37.06 | 20.51 | [Closed-Book Training to Improve Summarization Encoder Memory](http://aclweb.org/anthology/D18-1440) | |
| rnn-ext + abs + RL + rerank (Chen and Bansal, 2018) | 40.88 | 17.80 | 38.54 | 20.38 | [Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting](http://aclweb.org/anthology/P18-1061) | [Official](https://github.com/chenrocks/fast_abs_rl) |
| Lead-3 baseline (See et al., 2017) | 40.34 | 17.70 | 36.57 | 22.21 | [Get To The Point: Summarization with Pointer-Generator Networks](http://aclweb.org/anthology/P17-1099) | [Official](https://github.com/abisee/pointer-generator) |
| Pointer + Coverage + EntailmentGen + QuestionGen (Guo et al., 2018) | 39.81 | 17.64 | 36.54 | 18.54 | [Soft Layer-Specific Multi-Task Summarization with Entailment and Question Generation](http://aclweb.org/anthology/P18-1064) | |
| ML+RL ROUGE+Novel, with LM (Kryscinski et al., 2018) | 40.19 | 17.38 | 37.52 | - | [Improving Abstraction in Text Summarization](http://aclweb.org/anthology/D18-1207) | |
| Pointer-generator + coverage (See et al., 2017) | 39.53 | 17.28 | 36.38 | 18.72 | [Get To The Point: Summarization with Pointer-Generator Networks](http://aclweb.org/anthology/P17-1099) | [Official](https://github.com/abisee/pointer-generator) |



### Gigaword

The Gigaword summarization dataset has been first used by [Rush et al., 2015](https://www.aclweb.org/anthology/D/D15/D15-1044.pdf) and represents a sentence summarization / headline generation task with very short input documents (31.4 tokens) and summaries (8.3 tokens). It contains 3.8M training, 189k development and 1951 test instances. Models are evaluated with ROUGE-1, ROUGE-2 and ROUGE-L using full-length F1-scores.
Expand Down

0 comments on commit b8c0f5e

Please sign in to comment.