-
Notifications
You must be signed in to change notification settings - Fork 148
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
297 additions
and
139 deletions.
There are no files selected for viewing
File renamed without changes.
File renamed without changes.
103 changes: 103 additions & 0 deletions
103
use_cases/2017_CSHL_NeuralDataScience/demo_CSHL2017_neurofinder02.00.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
clear; | ||
addpath(genpath('../../../ca_source_extraction')); % add packages to matlab path | ||
addpath(genpath('../../../NoRMCorre')); | ||
gcp; % start a local cluster | ||
|
||
foldername = '/Users/epnevmatikakis/Documents/Ca_datasets/Neurofinder/neurofinder.02.00/images'; | ||
% change foldername to where the data is saved | ||
files = subdir(fullfile(foldername,'*.tif*')); | ||
numFiles = length(files); | ||
|
||
%% concatenate files (this will take some time) | ||
tic; | ||
Ycon = concatenate_files(files,fullfile(foldername,'neurofinder0200.tif'),'tif'); | ||
toc | ||
%% construct a memory mapped file | ||
tic; | ||
data = memmap_file(fullfile(foldername,'neurofinder0200.tif')); | ||
toc | ||
|
||
%% now perform source extraction by splitting the FOV in patches | ||
|
||
sizY = size(data,'Y'); | ||
patch_size = [48,48]; % size of each patch along each dimension (optional, default: [32,32]) | ||
overlap = [8,8]; % amount of overlap in each dimension (optional, default: [4,4]) | ||
|
||
patches = construct_patches(sizY(1:end-1),patch_size,overlap); | ||
K = 6; % number of components to be found | ||
tau = 7; % std of gaussian kernel (size of neuron) | ||
p = 0; % order of autoregressive system (p = 0 no dynamics, p=1 just decay, p = 2, both rise and decay) | ||
|
||
options = CNMFSetParms(... | ||
'd1',sizY(1),'d2',sizY(2),... | ||
'deconv_method','constrained_foopsi',... % activity deconvolution method | ||
'temporal_iter',2,... % number of block-coordinate descent steps | ||
'cluster_pixels',false,... | ||
'ssub',2,... % downsample factor in space | ||
'tsub',4,... % downsample factor in time | ||
'merge_thr',0.8,... % merging threshold | ||
'gSig',tau,... | ||
'gnb',2,... | ||
'spatial_method','regularized'... | ||
); | ||
|
||
%% run CNMF algorithm on patches, combine results and classify components | ||
tic; | ||
[A,b,C,f,S,P,RESULTS,YrA] = run_CNMF_patches(data,K,patches,tau,p,options); | ||
[ROIvars.rval_space,ROIvars.rval_time,ROIvars.max_pr,ROIvars.sizeA,keep] = classify_components(data,A,C,b,f,YrA,options); | ||
toc | ||
|
||
%% a simple GUI for further classification | ||
Coor = plot_contours(A,Cn,options,1); close; | ||
% run_GUI = 0; | ||
% if run_GUI | ||
% GUIout = ROI_GUI(A,options,Cn,Coor,keep,ROIvars); | ||
% options = GUIout{2}; | ||
% keep = GUIout{3}; | ||
% end | ||
|
||
%% view contour plots of selected and rejected components (optional) | ||
keep = (ROIvars.rval_space>.7 & ROIvars.rval_time>0); | ||
throw = ~keep; | ||
figure; | ||
ax1 = subplot(121); plot_contours(A(:,keep),Cn,options,0,[],Coor,1,find(keep)); title('Selected components','fontweight','bold','fontsize',14); | ||
ax2 = subplot(122); plot_contours(A(:,throw),Cn,options,0,[],Coor,1,find(throw));title('Rejected components','fontweight','bold','fontsize',14); | ||
linkaxes([ax1,ax2],'xy') | ||
%% inspect components | ||
plot_components_GUI(data,A(:,keep),C(keep,:),b,f,Cn,options); | ||
|
||
%% refine temporal components | ||
A_keep = A(:,keep); | ||
C_keep = C(keep,:); | ||
[C2,f2,P2,S2,YrA2] = update_temporal_components(data,A_keep,b,C_keep,f,P,options); | ||
|
||
%% detrend fluorescence and extract DF/F values | ||
df_percentile = 30; | ||
window = 1000; | ||
|
||
F = diag(sum(A_keep.^2))*(C2 + YrA2); % fluorescence | ||
Fd = prctfilt(F,df_percentile,window); % detrended fluorescence | ||
Bc = prctfilt((A_keep'*b)*f2,30,1000,300,0) + (F-Fd); % background + baseline for each component | ||
F_dff = Fd./Bc; | ||
|
||
%% deconvolve data | ||
|
||
nNeurons = size(F_dff,1); | ||
C_dec = zeros(size(F_dff)); | ||
S = zeros(size(F_dff)); | ||
kernels = cell(nNeurons,1); | ||
min_sp = 3; % find spikes resulting in transients above min_sp x noise level | ||
|
||
for i = 1:nNeurons | ||
[C_dec(i,:),S(i,:),kernels{i}] = deconvCa(F_dff(i,:), [], min_sp, true, false, [], 20, [], 0); | ||
end | ||
|
||
%% plot a random component | ||
i = randi(nNeurons); | ||
T = sizY(end); | ||
figure;plot(1:T,F_dff(i,:),'-k'); hold all; plot(1:T,C_dec(i,:),'r','linewidth',2); | ||
spt = find(S(i,:)); | ||
if spt(1) == 1; spt(1) = []; end | ||
hold on; scatter(spt,repmat(-0.25,1,length(spt)),'m*') | ||
title(['Component ',num2str(i)]); | ||
legend('Fluorescence DF/F','Deconvolved','Spikes') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
clear; | ||
gcp; % start a local cluster | ||
|
||
filename = 'demoSue2x.tif'; | ||
if ~exist(filename,'file'); | ||
url = 'https://www.dropbox.com/s/36xdfd28eone0hj/demoSue2x.tif?dl=1'; | ||
fprintf('downloading the file...'); | ||
outfilename = websave(filename,url); | ||
fprintf('done. \n'); | ||
end | ||
|
||
addpath(genpath('../../ca_source_extraction-master')); % add packages to matlab path | ||
addpath(genpath('NoRMCorre-master')); | ||
addpath(genpath('ca_source_extraction')); % add packages to matlab path | ||
addpath(genpath('NoRMCorre')); | ||
|
||
%% read file and determine dynamic range | ||
|
||
Y = read_file(filename); | ||
[d1,d2,T] = size(Y); % dimensions of file | ||
Y = Y - min(Y(:)); % remove negative offset | ||
|
||
minY = quantile(Y(1:1e7),0.0005); | ||
maxY = quantile(Y(1:1e7),1-0.0005); | ||
|
||
%% view data | ||
figure;play_movie({Y},{'raw data'},minY,maxY); | ||
|
||
|
||
%% perform motion correction (start with rigid) | ||
% parameters motion correction | ||
% 'd1','d2': size of FOV | ||
% 'bin_width': how often to update the template | ||
% 'max_shift': maximum allowed rigid shift | ||
|
||
options_rg = NoRMCorreSetParms('d1',size(Y,1),'d2',size(Y,2),'bin_width',100,'max_shift',15); | ||
|
||
[M_rg,shifts_rg,template_rg] = normcorre_batch(Y,options_rg); | ||
|
||
%% view data | ||
tsub = 5; % downsampling factor (only for display purposes) | ||
Y_sub = downsample_data(Y,'time',tsub); | ||
M_rgs = downsample_data(M_rg,'time',tsub); | ||
|
||
play_movie({Y_sub,M_rgs},{'raw data','rigid'},minY,maxY); | ||
|
||
%% perform non-rigid motion correction | ||
% parameters motion correction | ||
% 'd1','d2': size FOV movie | ||
% 'grid_size','overlap_pre': parameters regulating size of patch (size patch ~ (grid_size + 2*overlap_pre)) | ||
% 'mot_uf': upsampling factor of the grid for shift application | ||
% 'bin_width': how often to update the template | ||
% 'max_shift': maximum allowed rigid shift | ||
% 'max_dev': maximum deviation allowed for each patch from the rigid shift value | ||
|
||
options_nr = NoRMCorreSetParms('d1',size(Y,1),'d2',size(Y,2),... | ||
'grid_size',[48,48],'mot_uf',4,'overlap_pre',[16,16],... | ||
'bin_width',100,'max_shift',15,'max_dev',8); | ||
|
||
[M_nr,shifts_nr,template_nr] = normcorre_batch(Y,options_nr,template_rg); | ||
|
||
%% view (downsampled) data | ||
|
||
M_nrs = downsample_data(M_nr,'time',tsub); | ||
play_movie({Y_sub,M_rgs,M_nrs},{'raw data','rigid','pw-rigid'},minY,maxY); | ||
|
||
%% compute some metrics for motion correction quality assessment | ||
|
||
[cY,mY,vY] = motion_metrics(Y,options_rg.max_shift); | ||
[cM_rg,mM_rg,vM_rg] = motion_metrics(M_rg,options_rg.max_shift); | ||
[cM_nr,mM_nr,vM_nr] = motion_metrics(M_nr,options_rg.max_shift); | ||
|
||
|
||
%% plot metrics | ||
figure; | ||
ax(1) = subplot(2,3,1); imagesc(mY,[minY,maxY]); axis equal; axis tight; axis off; title('mean raw data','fontsize',14,'fontweight','bold') | ||
ax(2) = subplot(2,3,2); imagesc(mM_rg,[minY,maxY]); axis equal; axis tight; axis off; title('mean rigid corrected','fontsize',14,'fontweight','bold') | ||
ax(3) = subplot(2,3,3); imagesc(mM_nr,[minY,maxY]); axis equal; axis tight; axis off; title('mean non-rigid corrected','fontsize',14,'fontweight','bold') | ||
subplot(2,3,4); plot(1:T,cY,1:T,cM_rg,1:T,cM_nr); legend('raw data','rigid','non-rigid'); title('correlation coefficients','fontsize',14,'fontweight','bold') | ||
subplot(2,3,5); scatter(cY,cM_rg); hold on; plot([0.9*min(cY),1.05*max(cM_rg)],[0.9*min(cY),1.05*max(cM_rg)],'--r'); axis square; | ||
xlabel('raw data','fontsize',14,'fontweight','bold'); ylabel('rigid corrected','fontsize',14,'fontweight','bold'); | ||
subplot(2,3,6); scatter(cM_rg,cM_nr); hold on; plot([0.95*min(cM_rg),1.05*max(cM_nr)],[0.95*min(cM_rg),1.05*max(cM_nr)],'--r'); axis square; | ||
xlabel('rigid corrected','fontsize',14,'fontweight','bold'); ylabel('non-rigid corrected','fontsize',14,'fontweight','bold'); | ||
linkaxes(ax,'xy') | ||
%% plot shifts | ||
|
||
shifts_r = squeeze(cat(3,shifts_rg(:).shifts)); | ||
shifts_n = cat(ndims(shifts_nr(1).shifts)+1,shifts_nr(:).shifts); | ||
shifts_n = reshape(shifts_n,[],ndims(Y)-1,T); | ||
shifts_x = squeeze(shifts_n(:,2,:))'; | ||
shifts_y = squeeze(shifts_n(:,1,:))'; | ||
|
||
patch_id = 1:size(shifts_x,2); | ||
str = strtrim(cellstr(int2str(patch_id.'))); | ||
str = cellfun(@(x) ['patch # ',x],str,'un',0); | ||
|
||
figure; | ||
ax1 = subplot(311); plot(1:T,cY,1:T,cM_rg,1:T,cM_nr); legend('raw data','rigid','non-rigid'); title('correlation coefficients','fontsize',14,'fontweight','bold') | ||
set(gca,'Xtick',[]) | ||
ax2 = subplot(312); plot(shifts_x); hold on; plot(shifts_r(:,2),'--k','linewidth',2); title('displacements along x','fontsize',14,'fontweight','bold') | ||
set(gca,'Xtick',[]) | ||
ax3 = subplot(313); plot(shifts_y); hold on; plot(shifts_r(:,1),'--k','linewidth',2); title('displacements along y','fontsize',14,'fontweight','bold') | ||
xlabel('timestep','fontsize',14,'fontweight','bold') | ||
linkaxes([ax1,ax2,ax3],'x') | ||
|
||
%% now perform source extraction by splitting the FOV in patches | ||
|
||
sizY = size(M_nr); | ||
patch_size = [30,30]; % size of each patch along each dimension (optional, default: [32,32]) | ||
overlap = [8,8]; % amount of overlap in each dimension (optional, default: [4,4]) | ||
|
||
patches = construct_patches(sizY(1:end-1),patch_size,overlap); | ||
K = 4; % number of components to be found | ||
tau = 4; % std of gaussian kernel (half size of neuron) | ||
p = 0; % order of autoregressive system (p = 0 no dynamics, p=1 just decay, p = 2, both rise and decay) | ||
|
||
options = CNMFSetParms(... | ||
'd1',sizY(1),'d2',sizY(2),... | ||
'temporal_iter',2,... % number of block-coordinate descent steps | ||
'ssub',1,... % downsample in space | ||
'tsub',2,... % downsample in time | ||
'merge_thr',0.8,... % merging threshold | ||
'gSig',tau,... | ||
'gnb',2,... % number of background components | ||
'spatial_method','regularized'... | ||
); | ||
|
||
%% run CNMF algorithm on patches and combine | ||
tic; | ||
[A,b,C,f,S,P,RESULTS,YrA] = run_CNMF_patches(M_nr,K,patches,tau,p,options); | ||
[ROIvars.rval_space,ROIvars.rval_time,ROIvars.max_pr,ROIvars.sizeA,keep] = classify_components(M_nr,A,C,b,f,YrA,options); | ||
toc | ||
|
||
%% a simple GUI | ||
Cn = correlation_image_max(M_nr); | ||
Coor = plot_contours(A,Cn,options,1); close; | ||
run_GUI = false; | ||
if run_GUI | ||
GUIout = ROI_GUI(A,options,Cn,Coor,keep,ROIvars); | ||
options = GUIout{2}; | ||
keep = GUIout{3}; | ||
end | ||
|
||
%% view contour plots of selected and rejected components (optional) | ||
throw = ~keep; | ||
figure; | ||
ax1 = subplot(121); plot_contours(A(:,keep),Cn,options,0,[],Coor,1,find(keep)); title('Selected components','fontweight','bold','fontsize',14); | ||
ax2 = subplot(122); plot_contours(A(:,throw),Cn,options,0,[],Coor,1,find(throw));title('Rejected components','fontweight','bold','fontsize',14); | ||
linkaxes([ax1,ax2],'xy') | ||
%% inspect components | ||
plot_components_GUI(M_nr,A(:,keep),C(keep,:),b,f,Cn,options); | ||
|
||
%% refine temporal components | ||
A_keep = A(:,keep); | ||
C_keep = C(keep,:); | ||
[C2,f2,P2,S2,YrA2] = update_temporal_components(reshape(M_nr,[],T),A_keep,b,C_keep,f,P,options); | ||
|
||
%% detrend fluorescence and extract DF/F values | ||
|
||
df_percentile = 30; | ||
window = 1000; | ||
|
||
F = diag(sum(A_keep.^2))*(C2 + YrA2); % fluorescence | ||
Fd = prctfilt(F,df_percentile,window); % detrended fluorescence | ||
Bc = prctfilt((A_keep'*b)*f2,30,1000,300,0) + (F-Fd); % background + baseline for each component | ||
F_dff = Fd./Bc; | ||
|
||
%% deconvolve data | ||
|
||
nNeurons = size(F_dff,1); | ||
C_dec = zeros(size(F_dff)); | ||
S = zeros(size(F_dff)); | ||
kernels = cell(nNeurons,1); | ||
min_sp = 3; % find spikes resulting in transients above min_sp x noise level | ||
|
||
for i = 1:nNeurons | ||
[C_dec(i,:),S(i,:),kernels{i}] = deconvCa(F_dff(i,:), [], min_sp, true, false, [], 20, [], 0); | ||
end | ||
|
||
%% plot a random component | ||
|
||
i = randi(nNeurons); | ||
|
||
figure;plot(1:T,F_dff(i,:),'--k'); hold all; plot(1:T,C_dec(i,:),'r','linewidth',2); | ||
spt = find(S(i,:)); | ||
if spt(1) == 1; spt(1) = []; end | ||
hold on; scatter(spt,repmat(-0.25,1,length(spt)),'m*') | ||
title(['Component ',num2str(i)]); | ||
|
||
legend('Fluorescence DF/F','Deconvolved','Spikes') |
Oops, something went wrong.