Skip to content

Conversation

@renovate
Copy link
Contributor

@renovate renovate bot commented Jun 16, 2025

This PR contains the following updates:

Package Change Age Confidence
astroid ==3.3.10 -> ==4.0.2 age confidence
backrefs ==5.8 -> ==6.1 age confidence
isort (changelog) ==6.0.1 -> ==7.0.0 age confidence
markdown-it-py ==3.0.0 -> ==4.0.0 age confidence
numpy (changelog) ==1.26.4 -> ==2.3.5 age confidence
pbr ==6.1.1 -> ==7.0.3 age confidence
pylint (changelog) ==3.3.6 -> ==4.0.3 age confidence
pytest (changelog) ==8.3.5 -> ==9.0.1 age confidence
pytest-cov (changelog) ==6.1.1 -> ==7.0.0 age confidence
termcolor (changelog) ==2.3.0 -> ==3.2.0 age confidence

Release Notes

pylint-dev/astroid (astroid)

v4.0.2

Compare Source

============================
Release date: 2025-11-09

v4.0.1

Compare Source

============================
Release date: 2025-10-11

  • Suppress SyntaxWarning for invalid escape sequences and return in finally on
    Python 3.14 when parsing modules.

  • Assign Import and ImportFrom nodes to module locals if used with global.

    Closes pylint-dev/pylint#10632

v4.0.0

Compare Source

============================
Release date: 2025-10-05

  • Support constraints from ternary expressions in inference.

    Closes pylint-dev/pylint#9729

  • Handle deprecated bool(NotImplemented) cast in const nodes.

  • Add support for boolean truthiness constraints (x, not x) in inference.

    Closes pylint-dev/pylint#9515

  • Fix false positive invalid-name on attrs classes with ClassVar annotated variables.

    Closes pylint-dev/pylint#10525

  • Prevent crash when parsing deeply nested parentheses causing MemoryError in python's built-in ast.

    Closes #​2643

  • Fix crash when inferring namedtuple with invalid field name looking like f-string formatting.

    Closes #​2519

  • Fix false positive no-member in except * handler.

    Closes pylint-dev/pylint#9056

  • Fix crash when comparing invalid dict literal

    Closes #​2522

  • Removed internal functions infer_numpy_member, name_looks_like_numpy_member, and
    attribute_looks_like_numpy_member from astroid.brain.brain_numpy_utils.

  • To alleviate circular imports, the manager argument to AstroidBuilder() is now required.

  • Constants now have a parent of nodes.SYNTHETIC_ROOT.

  • Fix crashes with large positive and negative list multipliers.

    Closes #​2521
    Closes #​2523

  • Fix precedence of path arg in modpath_from_file_with_callback to be higher than sys.path

  • Following a deprecation period, the future argument was removed from statement() and frame().

  • Improve consistency of JoinedStr inference by not raising InferenceError and
    returning either Uninferable or a fully resolved Const.

    Closes #​2621

  • Fix crash when typing._alias() call is missing arguments.

    Closes #​2513

  • Remove support for Python 3.9 (and constant PY310_PLUS).

  • Include subclasses of standard property classes as property decorators

    Closes #​10377

  • Modify astroid.bases and tests.test_nodes to reflect that enum.property was added in Python 3.11, not 3.10

  • Fix incorrect result in _get_relative_base_path when the target directory name starts with the base path

    Closes #​2608

  • The brain for nose was dropped. nose has been deprecated for 10 years and the brain required some maintenance.

    Refs #​2765

  • Fix a crash when the root of a node is not a module but is unknown.

    Closes #​2672

  • Add basic support for ast.TemplateStr and ast.Interpolation added in Python 3.14.

    Refs #​2789

  • Add support for type parameter defaults added in Python 3.13.

  • Improve as_string() representation for TypeVar, ParamSpec and TypeVarTuple nodes, as well as
    type parameter in ClassDef, FuncDef and TypeAlias nodes (PEP 695).

  • Astroid now correctly supports the exceptions attribute of ExceptionGroup.

    Closes pylint-dev/pylint#8985
    Closes pylint-dev/pylint#10558

  • Deprecate importing node classes from astroid directly. This will be removed in v5.
    It's recommended to import them from astroid.nodes instead.

    Refs #​2837

v3.3.11

Compare Source

=============================
Release date: 2025-07-13

  • Fix a crash when parsing an empty arbitrary expression with extract_node (extract_node("__()")).

    Closes #​2734

  • Fix a crash when parsing a slice called in a decorator on a function that is also decorated with
    a known six decorator.

    Closes #​2721

facelessuser/backrefs (backrefs)

v6.1

Compare Source

6.1

  • NEW: Include Unicode 17 zip for early Python 3.15 usage, though Python 3.15 functionality is not guaranteed.
  • FIX: Fix issues with regex imports in later versions.

v6.0.1

Compare Source

6.0.1

  • FIX: Fix a regression that created an ASCII binary property that would override the ASCII block property.

v6.0

Compare Source

6.0

  • NEW: POSIX character classes will now always use POSIX compatibility rules instead of Unicode standard rules,
    if any are specified in the Unicode specification. The affected character classes are: [[:alnum:]], [[:digit:]],
    [[:xdigit:]], and [[:punct:]]. To explicitly use standard Unicode rules for these compatibility properties, use
    the Unicode property form instead: [\p{Alnum}], [\p{Digit}], [\p{Punct}], or [\p{XDigit}]. This has changed
    to ensure no confusion for users expecting compatible POSIX style character class properties.
  • FIX: Scoped ASCII/Unicode flags ((?a:pattern)/(?u:pattern)) should be respected for Unicode properties in
    bre and will ensure ASCII or Unicode range if used.
  • FIX: Fix issues related to detecting disabled scoped flags.

v5.9

Compare Source

5.9

  • NEW: Add support for Python 3.14.
  • ENHANCE: Switch to deploying with PyPI's "Trusted Publisher".
PyCQA/isort (isort)

v7.0.0

Compare Source

Changes

💥 Breaking Changes

🚀 Features

🪲 Fixes

👷 Continuous Integration

📦 Dependencies

v6.1.0

Compare Source

executablebooks/markdown-it-py (markdown-it-py)

v4.0.0

Compare Source

This primarily drops support for Python 3.9, adds support for Python 3.13,
and updates the parser to comply with Commonmark 0.31.2 and Markdown-It v14.1.0.

  • ⬆️ Drop support for Python 3.9 in #​360
  • ⬆️ Comply with Commonmark 0.31.2 in #​362
  • 👌 Improve performance of "text" inline rule in #​347
  • 👌 Use str.removesuffix in #​348
  • 👌 limit the number of autocompleted cells in a table in #​364
  • 👌 fix quadratic complexity in reference parser in #​367
  • 🐛 Fix emphasis inside raw links bugs in #​320

Full Changelog: executablebooks/markdown-it-py@v3.0.0...v4.0.0

numpy/numpy (numpy)

v2.3.5

Compare Source

v2.3.4: (Oct 15, 2025)

Compare Source

NumPy 2.3.4 Release Notes

The NumPy 2.3.4 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14. This
release is based on Python 3.14.0 final.

Changes

The npymath and npyrandom libraries now have a .lib rather than a
.a file extension on win-arm64, for compatibility for building with MSVC and
setuptools. Please note that using these static libraries is discouraged
and for existing projects using it, it's best to use it with a matching
compiler toolchain, which is clang-cl on Windows on Arm.

(gh-29750)

Contributors

A total of 17 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • !DWesl
  • Charles Harris
  • Christian Barbia +
  • Evgeni Burovski
  • Joren Hammudoglu
  • Maaz +
  • Mateusz Sokół
  • Matti Picus
  • Nathan Goldbaum
  • Ralf Gommers
  • Riku Sakamoto +
  • Sandeep Gupta +
  • Sayed Awad
  • Sebastian Berg
  • Sergey Fedorov +
  • Warren Weckesser
  • dependabot[bot]
Pull requests merged

A total of 30 pull requests were merged for this release.

v2.3.3: 2.3.3 (Sep 9, 2025)

Compare Source

NumPy 2.3.3 Release Notes

The NumPy 2.3.3 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14. Note
that the 3.14.0 final is currently expected in Oct, 2025. This release is based
on 3.14.0rc2.

Contributors

A total of 13 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • Aleksandr A. Voyt +
  • Bernard Roesler +
  • Charles Harris
  • Hunter Hogan +
  • Joren Hammudoglu
  • Maanas Arora
  • Matti Picus
  • Nathan Goldbaum
  • Raghuveer Devulapalli
  • Sanjay Kumar Sakamuri Kamalakar +
  • Tobias Markus +
  • Warren Weckesser
  • Zebreus +
Pull requests merged

A total of 23 pull requests were merged for this release.

  • #​29440: MAINT: Prepare 2.3.x for further development.
  • #​29446: BUG: Fix test_configtool_pkgconfigdir to resolve PKG_CONFIG_DIR...
  • #​29447: BLD: allow targeting webassembly without emscripten
  • #​29460: MAINT: Backport write_release.py
  • #​29473: MAINT: Bump pypa/cibuildwheel from 3.1.0 to 3.1.2
  • #​29500: BUG: Always return a real dtype from linalg.cond (gh-18304) (#​29333)
  • #​29501: MAINT: Add .file entry to all .s SVML files
  • #​29556: BUG: Casting from one timedelta64 to another didn't handle NAT.
  • #​29562: BLD: update vendored Meson to 1.8.3 [wheel build]
  • #​29563: BUG: Fix metadata not roundtripping when pickling datetime (#​29555)
  • #​29587: TST: update link and version for Intel SDE download
  • #​29593: TYP: add sorted kwarg to unique
  • #​29672: MAINT: Update pythoncapi-compat from main.
  • #​29673: MAINT: Update cibuildwheel.
  • #​29674: MAINT: Fix typo in wheels.yml
  • #​29683: BUG, BLD: Correct regex for ppc64 VSX3/VSX4 feature detection
  • #​29684: TYP: ndarray.fill() takes no keyword arguments
  • #​29685: BUG: avoid thread-unsafe refcount check in temp elision
  • #​29687: CI: replace comment-hider action in mypy_primer workflow
  • #​29689: BLD: Add missing <unordered_map> include
  • #​29691: BUG: use correct input dtype in flatiter assignment
  • #​29700: TYP: fix np.bool method declarations
  • #​29701: BUG: Correct ambiguous logic for s390x CPU feature detection

v2.3.2: (Jul 24, 2025)

Compare Source

NumPy 2.3.2 Release Notes

The NumPy 2.3.2 release is a patch release with a number of bug fixes
and maintenance updates. The highlights are:

  • Wheels for Python 3.14.0rc1
  • PyPy updated to the latest stable release
  • OpenBLAS updated to 0.3.30

This release supports Python versions 3.11-3.14

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • !DWesl
  • Charles Harris
  • Joren Hammudoglu
  • Maanas Arora
  • Marco Edward Gorelli
  • Matti Picus
  • Nathan Goldbaum
  • Sebastian Berg
  • kostayScr +

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #​29256: MAINT: Prepare 2.3.x for further development
  • #​29283: TYP: Work around a mypy issue with bool arrays (#​29248)
  • #​29284: BUG: fix fencepost error in StringDType internals
  • #​29287: BUG: handle case in mapiter where descriptors might get replaced...
  • #​29350: BUG: Fix shape error path in array-interface
  • #​29412: BUG: Allow reading non-npy files in npz and add test
  • #​29413: TST: Avoid uninitialized values in test (#​29341)
  • #​29414: BUG: Fix reference leakage for output arrays in reduction functions
  • #​29415: BUG: fix casting issue in center, ljust, rjust, and zfill (#​29369)
  • #​29416: TYP: Fix overloads in np.char.array and np.char.asarray...
  • #​29417: BUG: Any dtype should call square on arr \*\* 2 (#​29392)
  • #​29424: MAINT: use a stable pypy release in CI
  • #​29425: MAINT: Support python 314rc1
  • #​29429: MAINT: Update highway to match main.
  • #​29430: BLD: use github to build macos-arm64 wheels with OpenBLAS and...
  • #​29437: BUG: fix datetime/timedelta hash memory leak (#​29411)

Checksums

MD5
e35c637ea9fba77eabfdf70e26eaa16d  numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl
3dede42d11c843cfacff422f65a80e47  numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl
f5c485a43210eb3541b254c8c9d6ac9e  numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl
658950eb37e19b42920635ee60830a1d  numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl
9a864a280798829cc522521bc5d9c7e2  numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
085e1ff7746d327a1320672ab86966c3  numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
6acefa06c38bc616352b76174d4f19d2  numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl
4dd3469970dbfba60dad41b9923c5a5a  numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl
ad090139b8b872a9157b92c840566c5e  numpy-2.3.2-cp311-cp311-win32.whl
09b023f808432e60633e36a13630dc13  numpy-2.3.2-cp311-cp311-win_amd64.whl
c80f2a1c4c829ccb6745a6d0803b7177  numpy-2.3.2-cp311-cp311-win_arm64.whl
307fc28e0c630dbc5a6ff4051ee9ec6c  numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl
4af1ffb81bdec235aef1b9bdf7c1566d  numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl
8003e8df1badaffee163a603bf05656b  numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl
e703fab1c371fd27389401caa34a5cbd  numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl
5fdc228f15ec5de78b89c7aa4c137019  numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
f3bc10b89911c09777c4c5d9752f35b0  numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
5d0128aa0f6aa3a5122364a727a72eba  numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl
ef392070c44709321d7f87ab15bbd674  numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl
909e05dcd1164cc02d5fccc1cc6c9ca6  numpy-2.3.2-cp312-cp312-win32.whl
3ba0b657682fc54d9433b4d7244c9264  numpy-2.3.2-cp312-cp312-win_amd64.whl
05755e8c591b1ac2fff05a06d76ac414  numpy-2.3.2-cp312-cp312-win_arm64.whl
c1e323fa1986bc99ae96c46126a30f93  numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl
9a89327ef3550581017ea6e2a47c1a8e  numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl
3c7236116911c5c19de0091d7ac81f65  numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl
1809c7adafae6492741864cf4dda7d1e  numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl
ee68f94ec5f9c0c7f9423d7329bc085e  numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
24c4e95f0a615356787e2920378e5c6f  numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
5c53a2c915d177b7c305c0386ba21b43  numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl
c4607ea441320a0078d942ca21ef2411  numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl
09f2fdeb35d952751ba269ca5fa77e7a  numpy-2.3.2-cp313-cp313-win32.whl
47a7326544ce192df844b3e9750c7704  numpy-2.3.2-cp313-cp313-win_amd64.whl
9b5adab8ee4eb97ccf90d73d63671db4  numpy-2.3.2-cp313-cp313-win_arm64.whl
7169baf4160b9a75790650cef23a73e1  numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl
0338f2a78981d84d84e5f693ed6112d5  numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl
b0c1c28add9716f7cee433d53fb43067  numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl
d2d8d43c535184095550420169858b90  numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl
745bb6930958f4d7980cd705621abc25  numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
96412f8c9687d468e260aacdfb9cca02  numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
11ce971fe997bf5c0784516db85891ff  numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl
e71ba272e9db74bc753ca056e76fdf5b  numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl
82feb6822f2cf04a9edf38cf7f7d4806  numpy-2.3.2-cp313-cp313t-win32.whl
c6c8a1a2e94a9fc2dad9d161a6666e54  numpy-2.3.2-cp313-cp313t-win_amd64.whl
29e65f132c4a916214a0e82bca214717  numpy-2.3.2-cp313-cp313t-win_arm64.whl
2b99d343001495b182027843bf2148b2  numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl
40d04ac18cd9db3c380224d3d5607770  numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl
871631874c6839719d1c1b3ad81835cd  numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl
4d4098888f19de85dd18646c2f955cd2  numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl
813e47e3c07cd28bf0458a1e513d6619  numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
1fe080566baca813e6ac4635011a408a  numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
bd44ab38b53a4b5b6130b6f01ffaf5fa  numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl
f2fda217bec39ede344b42fef2cbd9e5  numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl
c02218de0d0666769c91513eafaf251f  numpy-2.3.2-cp314-cp314-win32.whl
d419eb806a6f5debb366d4bcf0f5bde0  numpy-2.3.2-cp314-cp314-win_amd64.whl
851529ffdf2b0d4b66eb1ac99c24da3e  numpy-2.3.2-cp314-cp314-win_arm64.whl
2306e8b73fcd2d46116c6a95034e4d3a  numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl
b4d4ce3339cb9f0b0f2b339db803f39c  numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl
6ae336ac461d5d89811c8a236b442842  numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl
351f35dd00bfb35e6cad2447a14c7cdf  numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl
0e0b26b34024f24a5f59809a1778ace0  numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
bc77a7f5826bb0a38154d31d8444abb7  numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
cd1e335e2a8437339475db12ee30f26d  numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl
5c8093e713bd7e5f8512458d53fefeed  numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl
66125a7e4e311fc2dedfa8c25ee577f2  numpy-2.3.2-cp314-cp314t-win32.whl
97713f41a5d4a08e8ed3d629d07678d3  numpy-2.3.2-cp314-cp314t-win_amd64.whl
848c4c409b643c2b42c431f51b310095  numpy-2.3.2-cp314-cp314t-win_arm64.whl
e240eed2fc098f7a0ae9813abead8a05  numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
7e46ebe46530596019ae6b5db8a7a564  numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl
82077182e608a0d366eba700902463b5  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl
67db17064907cd22a74676b50de1ab6d  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
6d59903ecd732d53dd230ca59cdc2c34  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
baae8d6875e1de409ffef875896c4b4f  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
5d92d6c39f2f0b28149ed15437b13cf7  numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl
f8d3d3b3ecd2b6e98889e88f6bbdc1a3  numpy-2.3.2.tar.gz
SHA256
852ae5bed3478b92f093e30f785c98e0cb62fa0a939ed057c31716e18a7a22b9  numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl
7a0e27186e781a69959d0230dd9909b5e26024f8da10683bd6344baea1885168  numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl
f0a1a8476ad77a228e41619af2fa9505cf69df928e9aaa165746584ea17fed2b  numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl
cbc95b3813920145032412f7e33d12080f11dc776262df1712e1638207dde9e8  numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl
f75018be4980a7324edc5930fe39aa391d5734531b1926968605416ff58c332d  numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
20b8200721840f5621b7bd03f8dcd78de33ec522fc40dc2641aa09537df010c3  numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
1f91e5c028504660d606340a084db4b216567ded1056ea2b4be4f9d10b67197f  numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl
fb1752a3bb9a3ad2d6b090b88a9a0ae1cd6f004ef95f75825e2f382c183b2097  numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl
4ae6863868aaee2f57503c7a5052b3a2807cf7a3914475e637a0ecd366ced220  numpy-2.3.2-cp311-cp311-win32.whl
240259d6564f1c65424bcd10f435145a7644a65a6811cfc3201c4a429ba79170  numpy-2.3.2-cp311-cp311-win_amd64.whl
4209f874d45f921bde2cff1ffcd8a3695f545ad2ffbef6d3d3c6768162efab89  numpy-2.3.2-cp311-cp311-win_arm64.whl
bc3186bea41fae9d8e90c2b4fb5f0a1f5a690682da79b92574d63f56b529080b  numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl
2f4f0215edb189048a3c03bd5b19345bdfa7b45a7a6f72ae5945d2a28272727f  numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl
8b1224a734cd509f70816455c3cffe13a4f599b1bf7130f913ba0e2c0b2006c0  numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl
3dcf02866b977a38ba3ec10215220609ab9667378a9e2150615673f3ffd6c73b  numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl
572d5512df5470f50ada8d1972c5f1082d9a0b7aa5944db8084077570cf98370  numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
8145dd6d10df13c559d1e4314df29695613575183fa2e2d11fac4c208c8a1f73  numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
103ea7063fa624af04a791c39f97070bf93b96d7af7eb23530cd087dc8dbe9dc  numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl
fc927d7f289d14f5e037be917539620603294454130b6de200091e23d27dc9be  numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl
d95f59afe7f808c103be692175008bab926b59309ade3e6d25009e9a171f7036  numpy-2.3.2-cp312-cp312-win32.whl
9e196ade2400c0c737d93465327d1ae7c06c7cb8a1756121ebf54b06ca183c7f  numpy-2.3.2-cp312-cp312-win_amd64.whl
ee807923782faaf60d0d7331f5e86da7d5e3079e28b291973c545476c2b00d07  numpy-2.3.2-cp312-cp312-win_arm64.whl
c8d9727f5316a256425892b043736d63e89ed15bbfe6556c5ff4d9d4448ff3b3  numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl
efc81393f25f14d11c9d161e46e6ee348637c0a1e8a54bf9dedc472a3fae993b  numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl
dd937f088a2df683cbb79dda9a772b62a3e5a8a7e76690612c2737f38c6ef1b6  numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl
11e58218c0c46c80509186e460d79fbdc9ca1eb8d8aee39d8f2dc768eb781089  numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl
5ad4ebcb683a1f99f4f392cc522ee20a18b2bb12a2c1c42c3d48d5a1adc9d3d2  numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
938065908d1d869c7d75d8ec45f735a034771c6ea07088867f713d1cd3bbbe4f  numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
66459dccc65d8ec98cc7df61307b64bf9e08101f9598755d42d8ae65d9a7a6ee  numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl
a7af9ed2aa9ec5950daf05bb11abc4076a108bd3c7db9aa7251d5f107079b6a6  numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl
906a30249315f9c8e17b085cc5f87d3f369b35fedd0051d4a84686967bdbbd0b  numpy-2.3.2-cp313-cp313-win32.whl
c63d95dc9d67b676e9108fe0d2182987ccb0f11933c1e8959f42fa0da8d4fa56  numpy-2.3.2-cp313-cp313-win_amd64.whl
b05a89f2fb84d21235f93de47129dd4f11c16f64c87c33f5e284e6a3a54e43f2  numpy-2.3.2-cp313-cp313-win_arm64.whl
4e6ecfeddfa83b02318f4d84acf15fbdbf9ded18e46989a15a8b6995dfbf85ab  numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl
508b0eada3eded10a3b55725b40806a4b855961040180028f52580c4729916a2  numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl
754d6755d9a7588bdc6ac47dc4ee97867271b17cee39cb87aef079574366db0a  numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl
a9f66e7d2b2d7712410d3bc5684149040ef5f19856f20277cd17ea83e5006286  numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl
de6ea4e5a65d5a90c7d286ddff2b87f3f4ad61faa3db8dabe936b34c2275b6f8  numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
a3ef07ec8cbc8fc9e369c8dcd52019510c12da4de81367d8b20bc692aa07573a  numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
27c9f90e7481275c7800dc9c24b7cc40ace3fdb970ae4d21eaff983a32f70c91  numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl
07b62978075b67eee4065b166d000d457c82a1efe726cce608b9db9dd66a73a5  numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl
c771cfac34a4f2c0de8e8c97312d07d64fd8f8ed45bc9f5726a7e947270152b5  numpy-2.3.2-cp313-cp313t-win32.whl
72dbebb2dcc8305c431b2836bcc66af967df91be793d63a24e3d9b741374c450  numpy-2.3.2-cp313-cp313t-win_amd64.whl
72c6df2267e926a6d5286b0a6d556ebe49eae261062059317837fda12ddf0c1a  numpy-2.3.2-cp313-cp313t-win_arm64.whl
448a66d052d0cf14ce9865d159bfc403282c9bc7bb2a31b03cc18b651eca8b1a  numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl
546aaf78e81b4081b2eba1d105c3b34064783027a06b3ab20b6eba21fb64132b  numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl
87c930d52f45df092f7578889711a0768094debf73cfcde105e2d66954358125  numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl
8dc082ea901a62edb8f59713c6a7e28a85daddcb67454c839de57656478f5b19  numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl
af58de8745f7fa9ca1c0c7c943616c6fe28e75d0c81f5c295810e3c83b5be92f  numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
fed5527c4cf10f16c6d0b6bee1f89958bccb0ad2522c8cadc2efd318bcd545f5  numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
095737ed986e00393ec18ec0b21b47c22889ae4b0cd2d5e88342e08b01141f58  numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl
b5e40e80299607f597e1a8a247ff8d71d79c5b52baa11cc1cce30aa92d2da6e0  numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl
7d6e390423cc1f76e1b8108c9b6889d20a7a1f59d9a60cac4a050fa734d6c1e2  numpy-2.3.2-cp314-cp314-win32.whl
b9d0878b21e3918d76d2209c924ebb272340da1fb51abc00f986c258cd5e957b  numpy-2.3.2-cp314-cp314-win_amd64.whl
2738534837c6a1d0c39340a190177d7d66fdf432894f469728da901f8f6dc910  numpy-2.3.2-cp314-cp314-win_arm64.whl
4d002ecf7c9b53240be3bb69d80f86ddbd34078bae04d87be81c1f58466f264e  numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl
293b2192c6bcce487dbc6326de5853787f870aeb6c43f8f9c6496db5b1781e45  numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl
0a4f2021a6da53a0d580d6ef5db29947025ae8b35b3250141805ea9a32bbe86b  numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl
9c144440db4bf3bb6372d2c3e49834cc0ff7bb4c24975ab33e01199e645416f2  numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl
f92d6c2a8535dc4fe4419562294ff957f83a16ebdec66df0805e473ffaad8bd0  numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
cefc2219baa48e468e3db7e706305fcd0c095534a192a08f31e98d83a7d45fb0  numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
76c3e9501ceb50b2ff3824c3589d5d1ab4ac857b0ee3f8f49629d0de55ecf7c2  numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl
122bf5ed9a0221b3419672493878ba4967121514b1d7d4656a7580cd11dddcbf  numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl
6f1ae3dcb840edccc45af496f312528c15b1f79ac318169d094e85e4bb35fdf1  numpy-2.3.2-cp314-cp314t-win32.whl
087ffc25890d89a43536f75c5fe8770922008758e8eeeef61733957041ed2f9b  numpy-2.3.2-cp314-cp314t-win_amd64.whl
092aeb3449833ea9c0bf0089d70c29ae480685dd2377ec9cdbbb620257f84631  numpy-2.3.2-cp314-cp314t-win_arm64.whl
14a91ebac98813a49bc6aa1a0dfc09513dcec1d97eaf31ca21a87221a1cdcb15  numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
71669b5daae692189540cffc4c439468d35a3f84f0c88b078ecd94337f6cb0ec  numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl
69779198d9caee6e547adb933941ed7520f896fd9656834c300bdf4dd8642712  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl
2c3271cc4097beb5a60f010bcc1cc204b300bb3eafb4399376418a83a1c6373c  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
8446acd11fe3dc1830568c941d44449fd5cb83068e5c70bd5a470d323d448296  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
aa098a5ab53fa407fded5870865c6275a5cd4101cfdef8d6fafc48286a96e981  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
6936aff90dda378c09bea075af0d9c675fe3a977a9d2402f95a87f440f59f619  numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl
e0486a11ec30cdecb53f184d496d1c6a20786c81e55e41640270130056f8ee48  numpy-2.3.2.tar.gz

v2.3.1: (Jun 21, 2025)

Compare Source

NumPy 2.3.1 Release Notes

The NumPy 2.3.1 release is a patch release with several bug fixes,
annotation improvements, and better support for OpenBSD. Highlights are:

  • Fix bug in matmul for non-contiguous out kwarg parameter
  • Fix for Accelerate runtime warnings on M4 hardware
  • Fix new in NumPy 2.3.0 np.vectorize casting errors
  • Improved support of cpu features for FreeBSD and OpenBSD

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Brad Smith +
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • François Rozet
  • Joren Hammudoglu
  • Matti Picus
  • Mugundan Selvanayagam
  • Nathan Goldbaum
  • Sebastian Berg
Pull requests merged

A total of 12 pull requests were merged for this release.

  • #​29140: MAINT: Prepare 2.3.x for further development
  • #​29191: BUG: fix matmul with transposed out arg (#​29179)
  • #​29192: TYP: Backport typing fixes and improvements.
  • #​29205: BUG: Revert np.vectorize casting to legacy behavior (#​29196)
  • #​29222: TYP: Backport typing fixes
  • #​29233: BUG: avoid negating unsigned integers in resize implementation...
  • #​29234: TST: Fix test that uses uninitialized memory (#​29232)
  • #​29235: BUG: Address interaction between SME and FPSR (#​29223)
  • #​29237: BUG: Enforce integer limitation in concatenate (#​29231)
  • #​29238: CI: Add support for building NumPy with LLVM for Win-ARM64
  • #​29241: ENH: Detect CPU features on OpenBSD ARM and PowerPC64
  • #​29242: ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64.
Checksums
MD5
c353ac75ea083594a6cb674b5f943d83  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
fdb5454e372d399cf570868ea7e2b192  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
dc0f17823bb1826519d6974c2b95fa90  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
7e3118fe383af697a8868ba191b9eac0  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
705aafad1250aa3e41502c5710a26ed5  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
003d6268344577b804205098e11cdaa0  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
7d0c0fd11c573c510a25dd7513e4ae0a  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
d99f993ef05966ead99df736df18b521  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
96933cac225fb8b60a9cc2c0efa14d36  numpy-2.3.1-cp311-cp311-win32.whl
f777712419f3dd586ac294ddce84b274  numpy-2.3.1-cp311-cp311-win_amd64.whl
1fe2615669de5c271a48b99356fa3528  numpy-2.3.1-cp311-cp311-win_arm64.whl
fccca48846d41d38966cc75395787f79  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
fa389e78db43f3c2841ce127c1205422  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
2554944d786abd284db4a699d4edfe1e  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
7fec491834803a8ffa3765ef3d03cea5  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
7c2d8b4412f12b9b02e98349fb5cd760  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
94dcc636a2f2478666d820e21fc91682  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
404128939d89d1ea26be105fb03b5028  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
e89d8d460060e8315c3ba68b2b649db0  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
a767bd10267ad6baef9655fb08db3fd3  numpy-2.3.1-cp312-cp312-win32.whl
f753b957fcb7f06f043cf9c6114f294c  numpy-2.3.1-cp312-cp312-win_amd64.whl
58ffa7c69587f9bf8f6025794fec7f63  numpy-2.3.1-cp312-cp312-win_arm64.whl
22a2a9a568dd0866b288ad8bd8bb3e90  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
5e1593fcc8bb3447e995622f2dca017b  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
894d56072db9358e0096538710a1a8ce  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
593cb311f5170cbcfcefb587cdcc70bb  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
22935447e75acda4075c57b332c0236a  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
5aa2040f947204e15e95ec87461a7e91  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
6516337f0347974fada21a23a818be64  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
ec956eb37b874b1ec52d6ffccda6ef65  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
0aaed62cb1bae9c1b1a44d1a4eda2db7  numpy-2.3.1-cp313-cp313-win32.whl
57829996fc12f649547f0258443bbb20  numpy-2.3.1-cp313-cp313-win_amd64.whl
a0d0dd68bbf0ab378142b2daff0a8e06  numpy-2.3.1-cp313-cp313-win_arm64.whl
b22dc66970a8017e4d0ce83ef8c938af  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
93c17afb38cf8fd876ca2bd9ea7e9612  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
283064dabb434f3dbc1a5e2514b9cb29  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
5b8c778033c98b4a0ce6e5bfc7625f05  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
2340bd78962f194bcdbee6531d954acc  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
43a92ad37dc68d719bdeeeb65b3f4d2f  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
eb110c4aa0d73558187397ddfba179ad  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
1f7f0076411ed4afa9c4553eb06564cb  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30f30dde6f806070b2164e48a632a350  numpy-2.3.1-cp313-cp313t-win32.whl
2375e2f2a5b75c5f5c908af6bb85d639  numpy-2.3.1-cp313-cp313t-win_amd64.whl
b421530a87bb8e9e3d4dc34c75d5d953  numpy-2.3.1-cp313-cp313t-win_arm64.whl
b1bc3cbf9cd407964b2bb25dfe86ca3d  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
4c2e234eb4f346f362d6e6c620fa7a56  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
98ec3c19a365d0ae926113bb349e323b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
e0c7bcd526cde46489d5a8f12e06cc77  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
41f535aa1f1acaf3d8a32a462a4cd4c8  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
2abf906a6688c98693045cbbc655d5b7  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
886559a4c541298b37245e389ce8bf10  numpy-2.3.1.tar.gz
SHA256
6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369  numpy-2.3.1-cp311-cp311-win32.whl
d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff  numpy-2.3.1-cp311-cp311-win_amd64.whl
ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a  numpy-2.3.1-cp311-cp311-win_arm64.whl
2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab  numpy-2.3.1-cp312-cp312-win32.whl
cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76  numpy-2.3.1-cp312-cp312-win_amd64.whl
7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30  numpy-2.3.1-cp312-cp312-win_arm64.whl
25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8  numpy-2.3.1-cp313-cp313-win32.whl
8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42  numpy-2.3.1-cp313-cp313-win_amd64.whl
0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e  numpy-2.3.1-cp313-cp313-win_arm64.whl
b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e  numpy-2.3.1-cp313-cp313t-win32.whl
2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc  numpy-2.3.1-cp313-cp313t-win_amd64.whl
eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244  numpy-2.3.1-cp313-cp313t-win_arm64.whl
ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3  numpy-2.3.1-pp311-pypy311_pp73-macos

</details>

---

### Configuration

📅 **Schedule**: Branch creation - "before 5am on Monday" in timezone UTC, Automerge - At any time (no schedule defined).

🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied.

♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

👻 **Immortal**: This PR will be recreated if closed unmerged. Get [config help](https://redirect.github.com/renovatebot/renovate/discussions) if that's undesired.

---

 - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box

---

This PR was generated by [Mend Renovate](https://mend.io/renovate/). View the [repository job log](https://developer.mend.io/github/finsite/template_python).
<!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiI0MC41MC4wIiwidXBkYXRlZEluVmVyIjoiNDEuMTczLjEiLCJ0YXJnZXRCcmFuY2giOiJtYWluIiwibGFiZWxzIjpbImRlcGVuZGVuY2llcyJdfQ==-->

@renovate renovate bot added the dependencies Pull requests that update a dependency file label Jun 16, 2025
@github-actions github-actions bot requested a review from mobious999 June 16, 2025 03:27
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 2 times, most recently from dff722c to c95cfa1 Compare June 21, 2025 22:48
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 3 times, most recently from 3a39e7a to f01a48f Compare July 30, 2025 06:43
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 3 times, most recently from 363c6c0 to 4d60b66 Compare August 13, 2025 10:34
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch from 4d60b66 to bade172 Compare August 21, 2025 17:04
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch from bade172 to 3ca6fe7 Compare September 19, 2025 16:09
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 3 times, most recently from 18211ce to 8df8ca4 Compare October 11, 2025 17:00
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 3 times, most recently from 2101526 to 5f1060f Compare October 15, 2025 17:05
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 2 times, most recently from 1a35d10 to fde7367 Compare October 25, 2025 20:46
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 2 times, most recently from 3406301 to 3c7243a Compare November 3, 2025 17:52
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 3 times, most recently from 2558be3 to ecc491d Compare November 12, 2025 18:49
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch 2 times, most recently from a73efb0 to ae603f0 Compare November 15, 2025 17:28
@renovate renovate bot force-pushed the renovate/major-python-dependencies branch from ae603f0 to 8e5cd84 Compare November 17, 2025 02:33
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

AnyChange dependencies Pull requests that update a dependency file release root source

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants