-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
haewonc
committed
Oct 15, 2024
1 parent
e2692d1
commit db0d1ec
Showing
7 changed files
with
449 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
import torch | ||
import polars as pr | ||
import pytorch_lightning as pl | ||
from torch.utils.data import Dataset | ||
from utils import train_val_test_split | ||
|
||
class PolarsDataset(Dataset): | ||
def __init__(self, df): | ||
self.df = df | ||
|
||
def __len__(self): | ||
return len(self.df) | ||
|
||
def __getitem__(self, idx): | ||
row = self.df.row(idx, named=True) | ||
return {"Sequence": row["Sequence"], "Entry": row["Entry"]} | ||
|
||
# Data Module | ||
class SequenceDataModule(pl.LightningDataModule): | ||
def __init__(self, data_path, batch_size): | ||
super().__init__() | ||
self.data_path = data_path | ||
self.batch_size = batch_size | ||
|
||
def setup(self, stage=None): | ||
df = pr.read_parquet(self.data_path) | ||
self.train_data, self.val_data, self.test_data = train_val_test_split(df) | ||
|
||
def train_dataloader(self): | ||
return torch.utils.data.DataLoader(PolarsDataset(self.train_data), batch_size=self.batch_size, shuffle=True) | ||
|
||
def val_dataloader(self): | ||
return torch.utils.data.DataLoader(PolarsDataset(self.val_data), batch_size=self.batch_size) | ||
|
||
def test_dataloader(self): | ||
return torch.utils.data.DataLoader(PolarsDataset(self.test_data), batch_size=self.batch_size) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
import torch | ||
import torch.nn as nn | ||
import pytorch_lightning as pl | ||
from esm.modules import ESM1bLayerNorm, RobertaLMHead, TransformerLayer | ||
|
||
class ESM2Model(pl.LightningModule): | ||
def __init__(self, num_layers, embed_dim, attention_heads, alphabet, token_dropout): | ||
super().__init__() | ||
self.num_layers = num_layers | ||
self.embed_dim = embed_dim | ||
self.attention_heads = attention_heads | ||
self.alphabet = alphabet | ||
self.alphabet_size = len(alphabet) | ||
self.batch_converter = self.alphabet.get_batch_converter() | ||
self.padding_idx = alphabet.padding_idx | ||
self.mask_idx = alphabet.mask_idx | ||
self.cls_idx = alphabet.cls_idx | ||
self.eos_idx = alphabet.eos_idx | ||
self.prepend_bos = alphabet.prepend_bos | ||
self.append_eos = alphabet.append_eos | ||
self.token_dropout = token_dropout | ||
self._init_submodules() | ||
|
||
def _init_submodules(self): | ||
self.embed_scale = 1 | ||
self.embed_tokens = nn.Embedding( | ||
self.alphabet_size, | ||
self.embed_dim, | ||
padding_idx=self.padding_idx, | ||
) | ||
|
||
self.layers = nn.ModuleList( | ||
[ | ||
TransformerLayer( | ||
self.embed_dim, | ||
4 * self.embed_dim, | ||
self.attention_heads, | ||
add_bias_kv=False, | ||
use_esm1b_layer_norm=True, | ||
use_rotary_embeddings=True, | ||
) | ||
for _ in range(self.num_layers) | ||
] | ||
) | ||
|
||
self.emb_layer_norm_after = ESM1bLayerNorm(self.embed_dim) | ||
|
||
self.lm_head = RobertaLMHead( | ||
embed_dim=self.embed_dim, | ||
output_dim=self.alphabet_size, | ||
weight=self.embed_tokens.weight, | ||
) | ||
|
||
def load_esm_ckpt(self, esm_pretrained): | ||
ckpt = {} | ||
model_data = torch.load(esm_pretrained)["model"] | ||
for k in model_data: | ||
if 'lm_head' in k: | ||
ckpt[k.replace('encoder.','')] = model_data[k] | ||
else: | ||
ckpt[k.replace('encoder.sentence_encoder.','')] = model_data[k] | ||
self.load_state_dict(ckpt) | ||
|
||
def compose_input(self, list_tuple_seq): | ||
_, _, batch_tokens = self.batch_converter(list_tuple_seq) | ||
batch_tokens = batch_tokens.to(self.device) | ||
return batch_tokens | ||
|
||
def get_layer_activations(self, input, layer_idx): | ||
if isinstance(input, str): | ||
tokens = self.compose_input([('protein', input)]) | ||
elif isinstance(input, list): | ||
tokens = self.compose_input([('protein', seq) for seq in input]) | ||
else: | ||
tokens = input | ||
|
||
x = self.embed_scale * self.embed_tokens(tokens) | ||
x = x.transpose(0, 1) # (B, T, E) => (T, B, E) | ||
for _, layer in enumerate(self.layers[:layer_idx]): | ||
x, attn = layer( | ||
x, | ||
self_attn_padding_mask=None, | ||
need_head_weights=False, | ||
) | ||
return tokens, x.transpose(0, 1) | ||
|
||
def get_sequence(self, x, layer_idx): | ||
x = x.transpose(0, 1) # (B, T, E) => (T, B, E) | ||
for _, layer in enumerate(self.layers[layer_idx:]): | ||
x, attn = layer( | ||
x, | ||
self_attn_padding_mask=None, | ||
need_head_weights=False, | ||
) | ||
x = self.emb_layer_norm_after(x) | ||
x = x.transpose(0, 1) # (T, B, E) => (B, T, E) | ||
logits = self.lm_head(x) | ||
return logits |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
tqdm | ||
numpy | ||
torch | ||
fair-esm | ||
wandb | ||
pandas | ||
transformers | ||
polars | ||
lightning |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import esm | ||
import torch | ||
import pytorch_lightning as pl | ||
from esm_wrapper import ESM2Model | ||
from sae_model import SparseAutoencoder, loss_fn | ||
import torch.nn.functional as F | ||
|
||
class SAELightningModule(pl.LightningModule): | ||
def __init__(self, args): | ||
super().__init__() | ||
self.save_hyperparameters() | ||
self.args = args | ||
self.layer_to_use = args.layer_to_use | ||
self.sae_model = SparseAutoencoder(args.d_model, args.d_hidden) | ||
self.alphabet = esm.data.Alphabet.from_architecture("ESM-1b") | ||
esm2_model = ESM2Model(num_layers=33, embed_dim=args.d_model, attention_heads=20, | ||
alphabet=self.alphabet, token_dropout=False) | ||
esm2_model.load_esm_ckpt(args.esm2_weight) | ||
self.esm2_model = esm2_model | ||
self.esm2_model.eval() | ||
for param in self.esm2_model.parameters(): | ||
param.requires_grad = False | ||
|
||
def forward(self, x): | ||
return self.sae_model(x) | ||
|
||
def training_step(self, batch, batch_idx): | ||
seqs = batch["Sequence"] | ||
batch_size = len(seqs) | ||
with torch.no_grad(): | ||
tokens, esm_layer_acts = self.esm2_model.get_layer_activations(seqs, self.layer_to_use) | ||
recons, auxk, num_dead = self(esm_layer_acts) | ||
mse_loss, auxk_loss = loss_fn(esm_layer_acts, recons, auxk) | ||
loss = mse_loss + auxk_loss | ||
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True, batch_size=batch_size) | ||
self.log('train_mse_loss', mse_loss, on_step=True, on_epoch=True, logger=True, batch_size=batch_size) | ||
self.log('train_auxk_loss', auxk_loss, on_step=True, on_epoch=True, logger=True, batch_size=batch_size) | ||
self.log('num_dead_neurons', num_dead, on_step=True, on_epoch=True, logger=True, batch_size=batch_size) | ||
return loss | ||
|
||
def validation_step(self, batch, batch_idx): | ||
seqs = batch["Sequence"] | ||
batch_size = len(seqs) | ||
with torch.no_grad(): | ||
tokens, esm_layer_acts = self.esm2_model.get_layer_activations(seqs, self.layer_to_use) | ||
recons, auxk, num_dead = self(esm_layer_acts) | ||
mse_loss, auxk_loss = loss_fn(esm_layer_acts, recons, auxk) | ||
loss = mse_loss + auxk_loss | ||
logits = self.esm2_model.get_sequence(recons, self.layer_to_use) | ||
logits = logits.view(-1, logits.size(-1)) | ||
tokens = tokens.view(-1) | ||
correct = (torch.argmax(logits, dim=-1) == tokens).sum().item() | ||
total = tokens.size(0) | ||
|
||
self.log('val_celoss', F.cross_entropy(logits, tokens).mean().item(), on_step=True, on_epoch=True, prog_bar=True, logger=True, batch_size=batch_size) | ||
self.log('val_acc', correct / total, on_step=True, on_epoch=True, prog_bar=True, logger=True, batch_size=batch_size) | ||
self.log('val_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True, batch_size=batch_size) | ||
return loss | ||
|
||
def test_step(self, batch, batch_idx): | ||
return self.validation_step(batch, batch_idx) | ||
|
||
def configure_optimizers(self): | ||
return torch.optim.AdamW(self.parameters(), lr=self.args.lr) | ||
|
||
def on_after_backward(self): | ||
self.sae_model.norm_weights() | ||
self.sae_model.norm_grad() |
Oops, something went wrong.