Skip to content

Use signature to extract op names #6

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 13, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 9 additions & 4 deletions examples/mnist_savedmodel.rs
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,15 @@ fn main() -> Result<(), Box<dyn Error>> {

// Load the saved model exported by regression_savedmodel.py.
let mut graph = Graph::new();
let session =
SavedModelBundle::load(&SessionOptions::new(), &["serve"], &mut graph, export_dir)?.session;
let op_x = graph.operation_by_name_required("serving_default_sequential_input")?;
let op_predict = graph.operation_by_name_required("StatefulPartitionedCall")?;
let bundle =
SavedModelBundle::load(&SessionOptions::new(), &["serve"], &mut graph, export_dir)?;
let session = &bundle.session;

let signature = bundle.meta_graph_def().get_signature("serving_default")?;
let input_info = signature.get_input("input")?;
let op_x = graph.operation_by_name_required(&input_info.name().name)?;
let output_info = signature.get_output("output")?;
let op_predict = graph.operation_by_name_required(&output_info.name().name)?;

// Train the model (e.g. for fine tuning).
let mut args = SessionRunArgs::new();
Expand Down
2 changes: 1 addition & 1 deletion examples/mnist_savedmodel/expected_values.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
4.0663176e-06, 1.4199884e-07, 9.556003e-05, 0.00065914105, 2.260991e-07, 4.076631e-06, 2.5459945e-09, 0.99904054, 1.5654963e-05, 0.00018059688
3.112342e-05, 8.721303e-08, 0.0005018024, 0.0003709061, 1.6482764e-08, 1.8595395e-06, 1.3620006e-09, 0.999046, 5.4331244e-06, 4.2815118e-05
8 changes: 6 additions & 2 deletions examples/mnist_savedmodel/mnist_savedmodel.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,11 @@
model.fit(x_train, y_train, epochs=1)

# convert output type through softmax so that it can be interpreted as probability
probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax(name="output")])
inputs = tf.keras.Input((28, 28), name="input", dtype=tf.float32)
x = model(inputs)
outputs = tf.keras.layers.Softmax(name="output")(x)

probability_model = tf.keras.Model(inputs=inputs, outputs=outputs)

# dump expected values to compare Rust's outputs
with open("examples/mnist_savedmodel/expected_values.txt", "w") as f:
Expand All @@ -45,6 +49,6 @@
logdir = "logs/mnist_savedmodel"
writer = tf.summary.create_file_writer(logdir)
tf.summary.trace_on()
values = probability_model(x_test[:1, :, :])
values = probability_model.predict(x_test[:1, :, :])
with writer.as_default():
tf.summary.trace_export("Default", step=0)
Binary file modified examples/mnist_savedmodel/saved_model.pb
Binary file not shown.
Binary file modified examples/mnist_savedmodel/variables/variables.data-00000-of-00001
Binary file not shown.
Binary file modified examples/mnist_savedmodel/variables/variables.index
Binary file not shown.
32 changes: 23 additions & 9 deletions examples/regression_savedmodel.rs
Original file line number Diff line number Diff line change
Expand Up @@ -41,27 +41,41 @@ fn main() -> Result<(), Box<dyn Error>> {

// Load the saved model exported by regression_savedmodel.py.
let mut graph = Graph::new();
let session =
SavedModelBundle::load(&SessionOptions::new(), &["serve"], &mut graph, export_dir)?.session;
let op_x = graph.operation_by_name_required("train_x")?;
let op_y = graph.operation_by_name_required("train_y")?;
let op_train = graph.operation_by_name_required("StatefulPartitionedCall")?;
let op_w = graph.operation_by_name_required("StatefulPartitionedCall_1")?;
let op_b = graph.operation_by_name_required("StatefulPartitionedCall_1")?;
let bundle =
SavedModelBundle::load(&SessionOptions::new(), &["serve"], &mut graph, export_dir)?;
let session = &bundle.session;

let train_signature = bundle.meta_graph_def().get_signature("train")?;
let x_info = train_signature.get_input("x")?;
let y_info = train_signature.get_input("y")?;
let train_info = train_signature.get_output("train")?;
let op_x = graph.operation_by_name_required(&x_info.name().name)?;
let op_y = graph.operation_by_name_required(&y_info.name().name)?;
let op_train = graph.operation_by_name_required(&train_info.name().name)?;
let w_info = bundle
.meta_graph_def()
.get_signature("w")?
.get_output("output")?;
let op_w = graph.operation_by_name_required(&w_info.name().name)?;
let b_info = bundle
.meta_graph_def()
.get_signature("b")?
.get_output("output")?;
let op_b = graph.operation_by_name_required(&b_info.name().name)?;

// Train the model (e.g. for fine tuning).
let mut train_step = SessionRunArgs::new();
train_step.add_feed(&op_x, 0, &x);
train_step.add_feed(&op_y, 0, &y);
train_step.request_fetch(&op_train, 0);
train_step.add_target(&op_train);
for _ in 0..steps {
session.run(&mut train_step)?;
}

// Grab the data out of the session.
let mut output_step = SessionRunArgs::new();
let w_ix = output_step.request_fetch(&op_w, 0);
let b_ix = output_step.request_fetch(&op_b, 1);
let b_ix = output_step.request_fetch(&op_b, 0);
session.run(&mut output_step)?;

// Check our results.
Expand Down
22 changes: 13 additions & 9 deletions examples/regression_savedmodel/regression_savedmodel.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,35 +14,39 @@ def __call__(self, x):
return y_hat

@tf.function
def get_weights(self):
return self.w, self.b
def get_w(self):
return {"output": self.w}

@tf.function
def get_b(self):
return {"output": self.b}

@tf.function
def train(self, x, y):
with tf.GradientTape() as tape:
y_hat = self(x)
loss = tf.reduce_mean(tf.square(y_hat - y))
grads = tape.gradient(loss, self.trainable_variables)
_ = self.optimizer.apply_gradients(
zip(grads, self.trainable_variables), name="train"
)
return loss
_ = self.optimizer.apply_gradients(zip(grads, self.trainable_variables))
return {"train": loss}


model = LinearRegresstion()

x = tf.TensorSpec([None], tf.float32, name="x")
y = tf.TensorSpec([None], tf.float32, name="y")
train = model.train.get_concrete_function(x, y)
weights = model.get_weights.get_concrete_function()
w = model.get_w.get_concrete_function()
b = model.get_b.get_concrete_function()

directory = "examples/regression_savedmodel"
signatures = {"train": train, "weights": weights}
signatures = {"train": train, "w": w, "b": b}
tf.saved_model.save(model, directory, signatures=signatures)

# export graph info to TensorBoard
logdir = "logs/regression_savedmodel"
writer = tf.summary.create_file_writer(logdir)
with writer.as_default():
tf.summary.graph(train.graph)
tf.summary.graph(weights.graph)
tf.summary.graph(w.graph)
tf.summary.graph(b.graph)
Binary file modified examples/regression_savedmodel/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file modified examples/regression_savedmodel/variables/variables.index
Binary file not shown.