Skip to content

dmlpt/Strong-DocFVLM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Download the code:

git clone https://github.com/dmlpt/Strong-DocFVLM
cd Strong-DocFVLM

Follow the instructions at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl1.5 to install mPLUG-DocOwl1.5

Create a symbolic link for the data inside Strong-DocFVLM folder

ln -s /path/to/challenge/data data

Download models [https://strong-docfvlm.s3.us-east-2.amazonaws.com/checkpoint.tar] from aws and extract it inside Strong-DocFVLM folder : i.e

tar -xvf checkpoint.tar (Inside Strong-DocFVLM folder)

Inference on 4 datasets:

CUDA_VISIBLE_DEVICES=0 python eval_mplug_owl.py --output_path results/output_4_datasets.json --data_path data/processed_data  --test_file_name converted_output_test.json --sub_ds_list docvqa,infographicvqa,websrc,wtq

Inference on remaining 6 datasets:

CUDA_VISIBLE_DEVICES=4 python eval_mplug_owl.py --output_path results/output_6_datasets.json --data_path data/processed_data --test_file_name converted_output_test.json --sub_ds_list iconqa_fill_in_blank,funsd,iconqa_choose_txt,wildreceipt,textbookqa,tabfact

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published